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General Introduction

The technological developments in the field of genetic and transcriptomic sequencing

alongside with those in structural biology have led over the past decade to an exponential

growth of the collected biological data. This results in new horizons for the analysis of

the complex biological environment and convoluted protein interaction networks and in

understanding natural variations - with vital applications in a variety of biological and

medical fields. However, transforming raw biological data into knowledge requires a

mirrored effort in developing analysis workflows, bioinformatics platforms, mathematical

models and prediction tools able to speed up the pace of discovery in modern biology.

In this larger context, the overall objective of this thesis was to develop bioinformatics

and applied biocomputing tools and use them in computationally assisted experimental

approaches in immunobiology aimed at providing a better understanding of the origin and

evolution of RAG proteins the key molecular machinery of the adaptative immunity on one

hand, and on the other of the sequence-structural interplay in the vast repertoire of plant

NOD-like receptors in innate immunity.

The first part of the thesis presents the efforts in understanding the origin of the RAG

(recombination-activating gene) apparatus which in jawed vertebrates is responsible for

generating the extensive repertory of unique immune receptors in the B and T cells. The work

presented is the result of a pluridisciplinary collaboration between (i) Professor Andrei-J.

Petrescu, Head of the Department of Bioinformatics and Structural Biochemistry, IBAR,

(ii) with Professor David G. Schatz, Chair of the Department of Immunobiology at Yale

School of Medicine, US, member of the National Academy of Sciences and National

Academy of Medicine and (iii) with Professor Pierre Pontaroti, Group of Evolutionary

Biology, Aix-Marseille Université, CNRS SNC5039, France. This part describes our efforts

in identifying new RAG-like genes in more remote branches than previously reported,

extending our understanding of the origin of these genes and positing their arrival much
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earlier than initially considered, in the early bilaterian clade.

The second part of the thesis focuses on the innate plant immune system, specifically

on the intracellular NOD-like receptors (NLRs). The following chapter presents our

computational work in generating probabilistic models of the 3D structure of ZAR1 - a

broad-spectrum NLR receptor shared by most flowering plant branches. This work was

part of a broader interdisciplinary collaboration with Professor Jennifer Lewis, Department

of Plant & Microbial Biology, Berkeley University of California, US. The main focus

of this joint project is to widen our structural understanding of the activation molecular

mechanisms of ZAR1 receptors in recognising a wide variety of pathogen-related molecules,

as such broad-spectrum receptors are of primary interest in devising crop pathogen control

strategies. The last two chapters present the development of two software packages -

LRRpredictor and NLRexpress - which employ machine-learning prediction tools aimed at

identifying NLR-associated sequence signatures and are the result of the collaboration with

Professor Aska Goverse, Laboratory of Nematology, Wageningen University and Research,

the Netherlands. The LRRpredictor software package was designed to address the high

pattern irregularity of LRR motifs in plant NLRs and to provide a significantly better

detection performance compared to previously existing methods. By utilising a collection

of machine learning estimators employing sequence and structural related information, this

tool is aimed at assisting structural modelling and molecular biology research involving

LRR domains. The last chapter presents NLRexpress software package - a three-module

prediction workflow comprising eleven neural network-based estimators aimed at identifying

key structural and functional motifs of the NLR constituent domains - CC, NBS and LRR -

which is designed for fast computations for screening large sequence databases such as the

entire proteome of a specie.
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Chapter 1

New findings on the origins of the RAG

machinery

1.1 Introduction & Background

The adaptive immune system, specific only to jawed vertebrates embodies an essential and

powerful evolutionary breakthrough, which is believed that provided jawed vertebrates with

a major evolutionary advantage (Litman et al., 2010). This extraordinary feature consists

of generating a vast repertoire of antigen receptor genes by recombination reactions during

lymphocyte development. The V(D)J recombination mechanism is performed by the RAG

machinery by operating on the variable, diversity, and joining genes, generating an enormous

set of possible antigen genes(Schatz and Swanson, 2011). The origin of the jawed-vertebrate

RAG recombinase machinery has been a subject of debate in the last two decades. Given

the similarities displayed by the RAG1 catalytic core to DDE transposase, it has been

initially assumed that the RAG genes have derived from a class II transposable element. The

initially identified element most similar to RAG1 was the Transib transposon (Kapitonov and

Jurka, 2005) and in the last 5 years, the discovery of multiple RAG-like (RAGL) genes in

invertebrate deuterostomes - several possessing full transposon layout have been reinforcing

this hypothesis (Fugmann et al., 2006; Huang et al., 2016; Morales Poole et al., 2017; Zhang

et al., 2019).

In vitro experiments on cephalochordate B.belcheri RAG1&2-like proteins showed their

TIR-dependent endonuclease and transposase activity, making it the first known to be
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CHAPTER 1. NEW FINDINGS ON THE ORIGINS OF THE RAG MACHINERY

Figure 1.1: The amphioxus RAG transposase activity diagram

active Proto RAG transposon (Huang et al., 2016). Furthermore, cryo-EM structures of

the amphioxus RAG-like machinery in different stages of transposition showed striking

similarities with the vertebrate RAG complex cleavage mechanisms, despite their low

homology at the protein sequence level (Zhang et al., 2019). Briefly, following the

translation of the two RAG1 and RAG2 encoding genes, the RAG tetramer complex is

formed and is composed of two RAG1-RAG2 heterodimers (Figure 1.1). The complex

recognizes the heptameric region of the TIR margins and brings together the 5’ and 3’ TIR

segments, bending the DNA and forming a circular-like structure (Zhang et al., 2019). The

endonuclease complex nicks the DNA at the beginning of the TIR margins, excising the

transposon DNA cassette from the genomic locus (Figure 1.1), which will be rejoined by the

host repair enzymes. The mobile transposon element is inserted into a new genomic locus, a

process in which a new target site duplication (TSD) of 5bp is generated, corresponding to a

new insertion locus (Zhang et al., 2019).

Prior to 2019-2020, when this study was conducted, there has been no evidence for

RAG transposon activity outside the deuterostome phylum, whereas the Transib transposon

has been identified broadly from deuterostomes to the fungi kingdom (Kapitonov and

Jurka, 2005; Kapitonov and Koonin, 2015). This chapter presents the identification of

several RAG1L-RAG2L gene pairs in the Protostomia superphylum inside Mollusca and

Nemertea clades, of which several exhibits the full transposon organisation, with markers

of transposase activity (Martin et al., 2020b), preserved CDS that could encode full-length

protein products with the complete domain layout. Moreover, less preserved copies were
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CHAPTER 1. NEW FINDINGS ON THE ORIGINS OF THE RAG MACHINERY

identified in the Cnidaria phylum, outside the Bilateria clade, altogether indicating that the

RAGL transposon was active outside the deuterostome clade as initially presumed and that

it might have arisen in the early metazoan evolution.

1.2 Results and Discussions

In order to screen the available genomic and transcriptomic public databases, a pool of

previously documented RAG1 and RAG2 sequences was used. As the sequence homology

between the vertebrate and invertebrate RAG2 is very low, beyond the detection threshold

of blast-based methods, an iterative screening approach was conducted which allowed the

detection of novel RAG1/2-like genes in the Protostomia and Cnidaria clades (Figure 1.2).

In Protostomia phylum, RAG1-RAG2 gene pairs were identified in the Mollusca clade

in oysters (Crassostrea virginica, Crassostrea gigas, Saccostrea glomerata), in mussels

(Modiolus philippinarum, Bathymodiolus platifrons) and in the pearl oyster clade (Pinctada

imbricata)(Martin et al., 2020b). In Nemertea phylum, at the time of the analysis, the

only species with available genomic and/or transcriptomic data was the ribbon worm

(Notospermus geniculatus), where numerous RAG1-RAG2 pairs were identified some of

which were supported by mRNA transcriptomic data. In Cnidaria, RAG gene pairs were

identified in Porites rus, Orbicella faveolata and Aurelia aurita (Martin et al., 2020b).

Contrasting to protostomes where multiple gene copies were identified in each species, in

Cnidaria only the A.aurita jellyfish exhibits an intact RAG pair was detected, whereas the

other identified loci display signs of pseudogenisation.

Specific to the class II DDE transposons is the presence of TIR elements at the boundary

of the mobile element. The compatibility region between the TIR segments often spans

only at the margins (8-10bp), making the detection of these elements more challenging.

In order to discriminate the transposon ends from other such inverted repeats which are

frequently found in the genome, a homology variation approach was employed, based on

the expectation that different duplicates of the transposons are expected to share a high

degree of sequence homology, while the flanking regions should display no homology as

these correspond to distinct insertion loci within the genome (Martin et al., 2020b). The

presence of TSD duplications flanking the TIR was used as an additional discriminatory
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CHAPTER 1. NEW FINDINGS ON THE ORIGINS OF THE RAG MACHINERY

constraint to distinguish between the transposons TIR and premature ends of the cassettes.

Several identified RAG1-RAG2 gene pairs displaying a complete transposon configuration

TSD-TIR-RAG1-RAG2-TIR-TSD were found in C.virginica, P.imbricata and

N.geniculatus. All the identified TIRs display a heptamer RSS-like region at the

beginning of the segment, with perfectly conserved first 3 nucleotides "CAC" - essential for

both transposase and recombinase functionality. Similarly to the previously reported TIR

elements in deuterostome, the protostome elements do not display a nonamer-like region.

Moreover, the length of 5bp of the identified TSD elements in the protostome is consistent

with those found in Transib, deuterostome and jawed-vertebrates RAG (Kapitonov and

Jurka, 2005; Morales Poole et al., 2017; Zhang et al., 2019).

Figure 1.2: RAGL distribution across phyla. Blue branches describe the previously

reported findings prior to March 2020, while clades identified in this study are shown in

magenta. The status of the most preserved loci is illustrated with pictograms.

The phylogeny analysis was performed on the RAG1 catalytic core region of the most

preserved identified representatives. The RAG1 tree follows the species phylogeny,

indicating vertical evolution within the two bilaterian clades - Protostomia and

Deuterostomia - consistent with the previously reported analyses (Morales Poole et al.,
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CHAPTER 1. NEW FINDINGS ON THE ORIGINS OF THE RAG MACHINERY

2017). The updated RAG family partitioning consists in: (a) RAG-A family - the closest

to the vertebrate RAG; (b) RAG-B family - widespread in the deuterostome clade which

contains previously reported RAGs in deuterosomes and many of the identified transposons

in protostome and cnidarian A.aurita; (c) RAG-C family - with a single reported member in

the hemichordate P. flava (Morales Poole et al., 2017); (d) RAG-D family - a novel distinct

family of RAGs, found only in the nemertean N.geniculatus.

Figure 1.3: The updated RAGL phylogeny tree indicates four main RAGL families. The

bootstrap branch support is computed using the Maximum Likelihood approach on the

catalytic core of RAG1.

The identified RAG1 homologs exhibit preponderantly, with very few exceptions, the

complete domain arrangement specific to deuterostome RAG1 transposases and vertebrate

RAG1 recombinase. The key positions in the Dimerization and DNA binding domain

(DDBD) and the Catalytic RNase H domain (RNH) are unanimously conserved in the

identified copies, as well as the Zn-finger motif (C830, C833, H1035, H1040) within

the ZnC2 and ZnH2 domains. The identified protostome representatives display a

C-terminus tail highly homologous with deuterostome RAG1L containing the cysteine-rich

C**C***GH****C pattern. All analyzed protostome RAG2L contain a Kelch-like domain

followed by a PHD domain. Similarly to the previously reported invertebrate RAG2s, these

lack the acidic long hinge connecting the two domains found in vertebrate RAG2. The

RAG1L - DNA contact sites, both within the TIR heptamer span, but also in the flanking

regions are majorly conserved with respect to the amphioxus RAG1, especially around the

catalytic acidic triad, suggesting that protostome RAG1s might exhibit a similar behaviour

regarding DNA binding and cleaving as observed in B.belcheri (Figure 1.4). On the other
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CHAPTER 1. NEW FINDINGS ON THE ORIGINS OF THE RAG MACHINERY

hand, the RAG1L-RAG2L interaction wide and complex surface is poorly conserved when

compared to B.belcheri RAG, suggesting that the two proteins coevolved together.

(a) RAG1 variability (b) RAG2 variability

Figure 1.4: (a) RAG1 and (b) RAG2 variability mapped on the amphyoxus cryo-EM

structure (color-code: from red-variable to blue-conserved).

1.3 Conclusions

The findings presented herein provide evidence that intact RAG transposons exist in various

protostome genomes, several of which are also supported by transcriptomic data. Alongside

the fact that they display intact TIR and TSD pairs, complete domain organisation and

conservation of the key functional residues, such RAG copies might potentially be currently

active in their host organisms. Outside the bilaterian clade, only a few incomplete RAG-like

pairs were identified in the Cnidaria phylum in various pseudogenisation stages, with

only a single gene pair in the A.aurita displaying complete protein domain configuration.

However, given the scarcity of the available genomic and transcriptomic sequenced data

in this taxonomic clade, the current status of RAG transposons cannot be further assessed.

Nevertheless, the presence of RAG remnants in Cnidaria indicates that the RAG transposon

might be older than initially presumed. The phylogeny analysis presented herein is consistent

with a vertical evolution trajectory of RAG inside the protostome and deuterostome clades,

these could indicate potential stages of domestication of the RAG genes in their host

organisms. Further studies of such RAG domestication candidates could be of interest, both

for bringing new insights into the vertebrate RAG recombinase domestication phenomenon

and also for investigating potentially novel biological functions of RAG in these organisms.
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Chapter 2

The structure of ZAR1: from in-silico 3D

model to experimental validation

2.1 Introduction and background

This chapter presents in detail the in-silico structural study of ZAR1 NLR receptor from

Arabidopsis thaliana, which started at the beginning of the doctoral programme in November

2016 and was part of a wider research project in collaboration with Professor Jennifer

Lewis, Department of Plant & Microbial Biology, Berkeley University of California. The

study aimed at providing a better understanding of the ZAR1 structural determinants in the

inter-domain interaction transitions during the activation mechanism.

The ZAR1 receptor is able to mediate the detection of a variety of pathogen-related proteins

and effectors via an assortment of adaptor kinases (Lewis et al., 2013; Bastedo et al., 2019),

such broad-spectrum NLRs being of great interest for developing pathogen control strategies.

Preceding research studies of the group identified a host kinase ZED1 that was required in

eliciting an immune response to Hopz1a effector from Pseudomonas syringae (Lewis et al.,

2008, 2010, 2013), as well as several point mutations and experimental truncations of the

ZAR1 sequence that inflict phenotypic changes in the inter-domain interaction profile and/or

impact the immune HR response (Baudin et al., 2017).

Developing 3D models of ZAR1 to assist the molecular biology experiments was helpful

in formulating hypotheses regarding the inter-domain interactions and putative rationales of
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CHAPTER 2. THE STRUCTURE OF ZAR1: FROM IN-SILICO 3D MODEL TO

EXPERIMENTAL VALIDATION

the experimental observations and in further proposing new interventions to experimentally

test these hypotheses and provide new data to improve the probabilistic models. In 2019,

the cryo-EM structure of ZAR1 was reported and provided us with the opportunity to

compare our probabilistic 3D models to the real structure, which turned out to be in

good agreement in a range of 2-5 deviation when overlapping the domains 3D structures,

highlighting the practicality and effectiveness of using probabilistic models in the absence

of experimentally-obtained 3D structures.

2.2 Results and Discussions

Generating 3D models of ZAR1 domains was challenging due to the extreme low homology

with any available 3D structure. At that time no experimentally acquired full protein 3D

structures of any plant NLR were available, but only: (i) three CC domain structures

with controversial 3D folds discussed below - ≤19% identity with ZAR1, (ii) several NBS

domains from the metazoan Apaf1 and Ced4 below 21% identity with ZAR1 and (iii) various

plant LRR domains all originating from extracellular receptors with significant structural

differences. In spite of the low homology with any templates known at that time, probabilistic

3D models of individual ZAR1 models were generated by employing different strategies and

further optimised through Molecular Dynamics simulations.

The experimentally solved structures available at that time indicated that the CC domain

could adopt two configurations: a 4-helical bundle (4H-CC) as in Rx and Sr33 structures

(Hao et al., 2013; Casey et al., 2016) or as a 2-helical bundle (2H-CC) in the MLA10 dimer

(Maekawa et al., 2011; Casey et al., 2016), which intriguingly, shares around 85% identity

with Sr33. The structural analysis of the two structures revealed that two 4H-CC monomers

of Sr33 overlay almost perfectly with the dimer of MLA10 (2 x 2H-CC) (Maekawa et al.,

2011; Casey et al., 2016). A possible structural transition consistent with both Sr33 and

MLA10 that we hypothesised at the beginning of the study, was that the peripheral first and

fourth helical segments unfold from the 4-helical bundle and embrace the other monomer.

Such a transition would require that the inter-helical loops to possess certain structural

ambivalence, allowing to transit between helical and turn folding.

Based on the generated ZAR1 3D models, several structural inferred hypotheses were
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CHAPTER 2. THE STRUCTURE OF ZAR1: FROM IN-SILICO 3D MODEL TO

EXPERIMENTAL VALIDATION

experimentally tested by our collaborators by performing mutagenesis experiments and

assessing phenotypic changes in the inter-domain interaction profile via yeast-two-hybrid

(Y2H) and bimolecular fluorescence complementation (BiFC), as well as differences in

the immune response in planta, described in detail in (Baudin et al., 2019). Mutations

altering the rich electrostatic charged composition of the inter-helical loops resulted in the

partial suppression of the CC dimerisation and the interaction with NBS and LRR domains

and in a reduced HR response in planta (Baudin et al., 2019), indicating that these loop

regions are involved in inter-domain interactions. To further study the involvement of the

first helical segment, mutations that reduce the hydrophobicity of the first helix of the CC

domain were proposed with the rationale that during activation the first helical segment is the

least constraint and can potentially initiate the transition. Experiments indicated a reduced

dimerization level and impaired CC-NBS interaction alongside complete suppression of the

immune response in planta, while it did not impact the CC-LRR interaction, suggesting

that the first helix of the CC domain is involved in interaction with NBS (Baudin et al.,

2019). Introducing mutations on the conserved EDVID motif yielded impaired dimerisation,

total alteration of the CC-NBS and CC-LRR interaction and complete suppression of the

HR response, indicating that this region might be involved in both NBS and LRR interface,

which was later confirmed by the ZAR1 cryo-EM structure (Baudin et al., 2019).

In 2019, cryo-EM structures of ZAR1 were reported in three stages of the activation

mechanism: inactive monomeric ADP-binding state, activated monomeric state with absent

nucleotide and oligomeric activated ATP-binding state (Wang et al., 2019b,a). This provided

us with the opportunity to evaluate our probabilistic 3D models generated before the

experimentally obtained structure. At the level of the CC domain, the cryo-EM structures

reveal drastic conformational changes - from a 4H-CC to a 3H-CC conformation during

activation. In the 4H-CC conformation, only the first half of H4a is part of the 4-helical

bundle while in our initial model, the entire H4 helix was modelled as part of the helical

bundle, whereas the rest of the 4H-CC model is in good overall agreement, with RMSD

values of 3.9 between the model and the cryo-EM structure (Figure 2.2). The proposed NBS

model shows a high structural agreement both for the inactive and activated conformations

(RMSD of 4.0 and 5.1 ). The LRR model also displays a good superposition at of

4.7 RMSD with the cryo-EM, in conformity with the overall shape, curvature pitch and

radius (Figure 2.2). Moreover, the model correctly represented the structural environment
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CHAPTER 2. THE STRUCTURE OF ZAR1: FROM IN-SILICO 3D MODEL TO

EXPERIMENTAL VALIDATION

surrounding the catalytic positions involved in binding the ADP/ATP ligand.

Figure 2.2: ZAR1 model vs cryo-EM in inactive/activated conformations (6j5w, 6j5t).

2.3 Conclusions

The chapter herein describes the structural analysis and generation of probabilistic 3D

models for ZAR1 domains prior to the appearance of the cryoEM structure. This provided

us with the opportunity to compare the initially proposed models with the experimental

structure and also to scrutinise the hypotheses formulated based on the probabilistic model

in the light of the new data. The model displays quite a good agreement with the 3D

structure, highlighting the practicality and efficacy of employing computational analysis and

probabilistic models in the absence of experimentally-driven 3D data.
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Chapter 3

LRRpredictor - the challenge of irregular

LRR pattern detection in plant NLRs

3.1 Introduction & Background

The leucine-rich repeat (LRR) architecture is central to the immune system, in pathogen

detection and signal transduction upon recognition across the entire life tree, from Archaea

to Mammalia (Enkhbayar et al., 2004). LRR domains adopt a ’horseshoe’-like solenoid 3D

structure composed of spires generated by tandem LRR repeats of ∼15-30 amino acid length.

These repeats are held together throughout a beta-sheet network formed on the inward side

of the domain and characterised by the presence of a conserved sequence pattern, termed the

LRR motif (Kajava and Kobe, 2002). The LRR motif consensus shows significant variations

across protein classes and phyla, the most minimalist LRR pattern shared by all classes

having ‘LxxLxL’ as a consensus (’L’ - any hydrophobic amino acid, most frequently leucine;

’x’ - any amino acid ). Furthermore, studies on plant NLRs domains showed a far more

increased frequency of motif irregularities when compared to their metazoan counterparts or

compared to plant extracellular receptors (Sela et al., 2014; Wang et al., 2019b).

Understanding the structural factors of the binding specificity of LRR domains unfolds

the prospect of receptor engineering for pathogen control, with vast implications both in

medicine and agricultural fields. The lack of sensitivity of current approaches in properly

detecting LRR motifs by their amino acid sequence is a huge drawback in bioinformatic

analysis, reliable 3D modelling and mapping between sequence/structural particularities and
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CHAPTER 3. LRRPREDICTOR - THE CHALLENGE OF IRREGULAR LRR

PATTERN DETECTION IN PLANT NLRS

biological behaviour. Difficulty in detecting individual motifs resides in the fact that the

minimalistic motif is extremely trivial and such patterns are often expected to randomly

occur in non-LRR proteins.

Presented in this chapter is the development of LRRpredictor - a new LRR pattern detection

method composed of an ensemble of estimators that aim to bring increased versatility to

pattern irregularities than existing methods by using resampling techniques. Further on,

the performance and behaviour of the LRRpredictor are evaluated in comparison with the

existing methods on a dataset of annotated domains from different classes (plant NLRs,

RLKs and RLPs and animal NLRs and TLRs).

3.2 Results and Discussion

Available annotated domain databases were used to gather LRR domains with known

3D structure. After applying a redundancy filter at 90% identity, 178 protein chains

(PDB-LRR-90) comprising ∼2100 LRR repeats were further used in analysis and subjected

to LRR repeat delineation based on their structural data and beta-sheet network. A second

redundancy filter of 50% identity was applied for obtaining the training set data, at the level

of individual LRR repeats, obtaining a set of ∼850 highly divergent repeats (PDB-LRR-50).

The 3D superposition of different LRR repeats showed high topological resemblance

extending both upstream and downstream the minimalist 6 aa long L0XXL3XL5 motif with at

least 5 residues in both directions (Figure 3.1b). Therefore, a 16 aa interval from position -5

to +10 around the L0 position was further referred to as the ’extended’ motif. An important

facet that limits the analysis is the extremely high taxonomic bias of the available 3D data on

LRR proteins in comparison with the equivalent baseline distribution of sequence databases

such as Uniref-50. Approximately half of the LRR repeats within PDB-LRR-50 originate

from mammalian species, while in UniRef-50 mammalian proteins share is less than 3% in

all proteins as well as in annotated LRR domains (Figure 3.1d). By contrast, plant R proteins

are extremely poorly represented, with a single experimental structure (Wang et al., 2019b,a)

reported prior to 2020, while the majority of plant LRR repeats belong to extracellular RLP

and RLK proteins.

LRRpredictor was trained on a protein set comprising the curated collection of 850 highly
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CHAPTER 3. LRRPREDICTOR - THE CHALLENGE OF IRREGULAR LRR

PATTERN DETECTION IN PLANT NLRS

(a) LRR domain horseshoe (b) LRR repeat motif (c) LRR motif composition

(d) Phyla distribution: sequence vs. structural data

Figure 3.1: (a) LRR architecture exemplified on ZAR1 structure (PDB: 6j5w). (b)

Zoom-in perspective of a LRR repeat. (c) Residue composition of the N-ter, core and

C-ter motifs (PDB-LRR-50 set). (d) Taxonomic distribution of the LRR motif sets versus

UniRef-50 sequence database. Figured derived from (Martin et al., 2020a).

diverse LRR motifs (at 50% identity) and a set of non-LRR proteins from each CATH 3D fold

topology. To supplement the predictor with broader sequence-related context information,

position-specific scoring matrices (PSSMs) profiles were used instead of the raw protein

sequence. These profiles are derived from residue transition probabilities conditioned by

the protein group they belong to and are expected to supply wider context information

and underline the key conserved positions and relationships between residues. Besides

sequence-related features, structural-based features were also explored - such as secondary

structure, solvent accessibility and disorder intrinsic predictions. Given the low number of

LRR repeat samples in the structural dataset, different artificial sample generation methods

were employed.

The optimised final predictor - LRRpredictor - consists of an ensemble of eight classifiers
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CHAPTER 3. LRRPREDICTOR - THE CHALLENGE OF IRREGULAR LRR

PATTERN DETECTION IN PLANT NLRS

that employ different supervised learning techniques and class-imbalance treatments which

are aggregated together via a soft voter approach. Half of the constituent estimators rely only

on sequence-related information, whereas the other half uses both sequence and structural

features. The training of the LRRpredictor was conducted using a 4-fold cross-validation

approach on 80% of the dataset, and the out-of-sample tests were employed on the remaining

20% of the data.

Across the different cross-validation and test sets, the recall, precision and F1 scores of the

ensemble predictor vary in the range of 85-97% for all LRR motif types and in the 89-98%

range when only the core (L) motifs are considered. LRRpredictor, as an ensemble predictor,

performs better overall when compared to the individual constituent estimators, both on the

test set, but also on each cross-validation set. LRRpredictor outperforms other LRR motif

predictors such as LRRsearch (Bej et al., 2014) and LRRfinder (Offord and Werling, 2013)

(??). The LRRpredictor pipeline was tested on four classes of solenoid proteins - trimeric,

pectate lyase, ankyrin and armadillo (50 seq/set) - which show the closest resemblance to

the LRR fold. LRRpredictor is capable to distinguish between true LRR motifs and other

LRR-like patterns, as no estimates over 50% LRR motif probability are obtained on all four

sets.

Given the high taxonomic bias observed in the structural database on which the LRR

predictor relies compared to the sequence database and more specific to the scarce structural

data on plant LRR domains, next evaluated was the ability of LRRpredictor to extrapolate

on different immune-related LRR-containing proteins. Datasets of the most representative

immune-related protein classes that contain LRR domains were gathered: 4 sets from plant

NLRs proteins (CNL and TNL) and extracellular LRR-containing receptors (RLK and RLP)

and 2 sets from vertebrates - cytosolic NLRs and extracellular TLR - as described in the

methods section. The identified LRR repeats using LRRpredictor display a good coverage

of the LRR domain span annotated in the Interpro database (Mitchell et al., 2019) in all

six datasets case. Approx. 75% of CNLs and 50% of TNLs LRR domains lack any

repeat annotation in Interpro, whereas the extracellular receptors annotations cover between

30-80% of the LRR domain. The coverage attained by LRRpredictor is significantly higher

with values over 90% coverage per LRR domain in two-thirds of each protein class data set.

The analysis of the detected LRR motifs in each class, reveals apparent distinctions between

the six immune receptor classes (Figure 3.2). While the minimum motif span - L0XXL3XL5

17



CHAPTER 3. LRRPREDICTOR - THE CHALLENGE OF IRREGULAR LRR

PATTERN DETECTION IN PLANT NLRS

- is invariant across sets, outside this region the CNL and TNL groups display increased

variability, whereas the extracellular receptors display a prolonged pattern.

Figure 3.2: LRR motif consensuses across different immune-related protein classes.

Sequence variability is expressed as relative entropy and depicted as letter height (higher

means higher conservation). Figured derived from (Martin et al., 2020a).

3.3 Conclusion

The results presented in this chapter show that LRRpredictor displays a good performance

on the structural data available at the moment. Moreover, the behaviour of the LRRpredictor

on different immune-related LRR-containing protein classes indicates a good extrapolation

ability, especially on the CNL and TNL resistance plant proteins, which are characterised

by increased pattern irregularity and are poorly represented in the structural training dataset.

The predictor is able to cover annotated LRR domain spans in the Interpro database with

significantly higher coverage rates compared to other LRR repeat annotations methods.

Moreover, the identified LRR motifs follow the previously reported consensus signatures

of each investigated immune receptors classes.

In conclusion, LRRpredictor is a tool that aims to assist structural-informed research in

understanding the sequence-structure-function interplay of individual immune receptors,

which is essential in receptor engineering and pathogen detection control.
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Chapter 4

NLRexpress - a collection of plant NLR

motif predictors

4.1 Introduction & context

The previous chapter describes the development of LRRpredictor (Martin et al., 2020a) -

an LRR motif predictor designed to address high motif irregularities such in the case of

plant NLRs, which consists of a collection of eight individual classifiers employing different

machine learning, artificial sampling strategies. The LRRpredictor classifiers compute

variability PSSM profiles, built using the global Uniprot-20 protein databases and structural

properties predictions - which both requires high computational resources, which makes

LRRpredictor less feasible for screening large datasets. A fast tool able to scan entire

organism proteomes or transcriptomes and annotate key functional motifs is valuable in

comparative sequence analysis, discriminating complete NLR transcripts from ones lacking

a specific motif, generating accurate 3D models and analysing changes in protein-protein

interaction surfaces.

Next efforts were made to bypass these limitations and investigate light-weight neural

network models able to reduce the execution time and computational resources required with

minimum performance loss. Besides focusing on the LxxLxL motifs describing each repeat

LRR element, the analysis was extended to include also sequence motifs found in the other

NLR-specific domains such as the NBS and CC domains - as these conserved positions have

vital roles such as ADP/ATP binding, inter-domain interaction or for the structural stability
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of the 3D fold (Wang et al., 2019a; Ma et al., 2020).

This chapter presents NLRexpress - a collection of ML-based predictors designed to identify

sequence motifs specific to resistance proteins in the CC, NBS and LRR domains and to be

scalable to screening large data sets. The pipeline was used to scan a ∼34,300 plant NLRs

and the detected motifs were clustered and analysed to identify inter-motif correlations using

unsupervised learning techniques.

4.2 Results and Discussions

NLRexpress comprises a collection of 11 neural network classifiers trained each to detect

individual sequence motifs specific to plant NLRs. NLRexpress is set up as 3 modular

prediction units as follows: (i) CCexpress - extended EDVID motif; (ii) NBSexpress -

VG/hhGRE, P-loop / Walker-A, Walker-B, A/B/C/D-RNBS, GLPL motifs and MHD; (iii)

LRRexpress - LxxLxL pattern.

The NLR-express workflow is displayed in Figure 4.1 and begins with the user input protein

sequence(s) in FASTA format. The first step consists in generating the input features required

by the prediction models, including building the variability HMM profiles. The individual

predictors part of each module is run independently, each of them returning as output the

probability estimate of each position of the input sequence(s) to start the given motif.

Many state-of-the-art prediction methods designed for protein sequence data rely on using

features inferred from HMM models, which are computationally expensive due to the large

size of the commonly used protein target databases such as Uniprot-20 or Uniclust-30. To

drastically reduce the time spent during this stage, custom NLR-oriented miniaturized search

databases were investigated in order to achieve the best trade-off between performance and

execution time. The training of the eleven NN models corresponding to each individual motif

was performed starting from a curated set of CC, NBS and LRR motifs from plant NLRs as

described in detail in the thesis, using a 4-fold cross-validation schema for hyper-parameter

optimisation.

In the case of the NBSexpress module, the eleven motifs show significantly higher

conservation, which reflects in the performance of the individual predictors with precision

and recall scores above 96%. The LRRexpress module yields balanced precision and
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(a) NLRexpress workflow

(b) User input data form (screen capture) (c) Job results page (screen capture)

Figure 4.1: (a) NLRexpress workflow with average execution time of each stage. (b)

NLRexpress webserver - screen captures (https://nlrexpress.biochim.ro).

sensitivity with F and G scores of 92% on the test set. Next, LRRexpress was run on the

curated 3D structural set of ∼2000 LRR motifs trimmed at 90% identity, described in the

previous chapter and in (Martin et al., 2020a). On this set, LRR-express attains an overall

F1-score of approx. 92% when taking into account only the core LRR motifs alone, while

∼88% when including the more irregular marginal repeats.

A further auxiliary test was assessing the behaviour of LRRexpress on other non-LRR

solenoid architectures containing the LxxLxL pattern which might provide a source of

confusion/false positive predictions. For this, were used the five benchmark sets of 50

sequences each from protein classes - ankyrin, pectate lyases, trimeric and armadillo -

previously described within the preceding chapter and in (Martin et al., 2020a). On these

sets, LRRexpress is capable of correctly classifying the L**L*L patterns when occurring

outside the LRR architecture context - with almost no false positives in sets containing each

between 1000-2700 LRR-like LxxLxL patterns.

The NLR-express pipeline was further used on the larger set of 34314 plant NLRs trimmed

at 90% identity. The predicted individual motifs were subjected to clustering either

based on residue similarity metrices or based on the overall physiochemical properties
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(hydrophobicity, volume and electrostatic charge).

Considering the proximity of the eleven NBS motifs in the 3D space - seven of them actively

participating in the formation of the ADP/ATP binding pocket - the analysis of the individual

regions taken separately would conceal relevant relationships shaping up at long distances

in sequence. Therefore, the NBS motifs of the cleaned set of ∼20000 were extracted,

concatenated and collectively clustered based on an amino acid similarity measure at various

identity thresholds as described in the methods section. At a cutoff of 55% identity, around

85% of the sequences are conveyed in the top ten largest clusters. The most invariant motif

areas are, as expected, the ones directly involved in ADP/ATP binding, notably within the

P-loop, Walker-B, B-RNBS motif in the NBD subdomain, and GLPL and MHD motifs

within the ARC1 and ARC2 subdomains, whereas cluster-specific characteristics are shaping

up within the more diverse motifs: the hhGRE and the A/C/D-RNBS motifs.

As the LRR motif is the most variable among the other NLR-related motifs, the next analysed

was how the motif variability distributes depending on the position in the LRR domain of

NLRs. A set of excised LxxLxL pattern regions (approx. 65000) were subjected to clustering

using unsupervised machine-learning approaches in an embedding describing their physio

chemical properties (hydrophobicity, charge and size). A strong predilection for positively

charged motifs is seen in all NLR classes within the first four repeats, the most frequently

occurring LRR pattern being of type LRxLxL. Contrarily to CNLs, the first LRR repeat in

TNLs shows a preference for an acidic environment in position 1 of the motif, while in RNLs,

a strong preference for LRxLxL type is noticed in the case of the first and third LRR repeats.

4.3 Conclusion

The results presented within this chapter indicate that NLRexpress - a prediction pipeline

gathering a collection of predictors designed to detect CC, NBS and LRR motifs specific

to plant NLRs - displays a good performance on the benchmark tests employed herein

and might be of use in assisting different types of NLR-related investigations. Besides

applications in structural modelling, due to its computational speed improvements, it is

feasible for large-scale sequence analysis, such as screening an entire proteome of a species

or in comparative analyses of large sets of orthologs.
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