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PART I – GENERAL INTRODUCTION 

CHAPTER 1 – AIM OF THE WORK 

Technological developments in biological data generation, as well as larger data 

storage solutions and faster data management have been a boon of the 21st century (Carugo 

and Djinović-Carugo, 2023). Researchers have now the daunting task of analyzing this 

massive amount of data for which advanced methods must be developed (and made as user-

friendly as possible) in order to turn data into useful knowledge. Starting with the mid 2010s 

the new cryo-EM technologies revolutionized the field and allowed structural insights into 

increasingly complex biomolecular systems; and as interpreting cryo-EM data critically 

depends on accurate molecular models, the second revolution came about at the beginning 

of the 2020s in the form of AI-driven automatic modelling platforms 3 an unprecedented 

shake up in the field. 

Given this context, the purpose of the presented work was:  

a) to examine the limits and to improve the capabilities of the new generation of AI 

technologies in protein structural prediction; 

b) to contribute, beyond structure prediction, to the development of new tools for 

exploring the conformational space of molecular systems 3 which are relevant in 

describing biomolecular interactions and processes in normal biological conditions 

and  

c) to develop computational workflows for solving intricate structural problems related 

to several specific protein-protein and protein-ligand complexes of medical 

relevance.  

The work covering these goals is structured in five chapters grouped in three parts as 

follows: 

The first part consisting of two chapters focuses on in-silico molecular modelling and 

results obtained on some relevant protein families using the new generation of AI-driven 

methods in both their automatic and customized flavors. This first part starts with a brief 

theoretical chapter, overviewing homology modelling techniques, both the <bespoke= and 

the more recent <neural network=-based ones.  

The second chapter of this part is dedicated to a thorough investigation of the capabilities 

and limits of the new generation AI-driven methods that became commonplace during the 

last years of my PhD studies and just received the Nobel Prize in 2024. While these methods 

are known to perform well in simple cases, we tested them in the more challenging case of 
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multistate multidomain proteins taking as an example the coiled-coil family of Nucleotide-

binding Oligomerization Domain-like (NOD-like) receptors on which our group 

(Department of Bioinformatics and Structural Biochemistry 3 DBSB) has gained a vast 

expertise over the past 15 years. Our results indicate that by fine-tuning what the neural 

network input was fed 3 the AlphaFold platform was able to distinctly model the <active= 

and <inactive= forms of the protein. This result indicates that our restrictive input method 

might be useful in multistate multidomain proteins for guiding the automatic modelling 

workflow toward specific conformations for proteins where multiple solved conformations 

exist. 

While structural predictive modelling is indispensable as a preliminary virtual 

description of biomolecular systems, this falls short in explaining the interactions and 

processes taking place in these systems which in natural biological conditions are driven by 

the laws of thermodynamics. As molecules are in perpetual thermal morphing, developing 

novel, faster techniques describing their possible states is of great importance. Given this, 

the second part of my thesis describes our contributions to the development of Robosample 

a new molecular sampling software platform, based on a previously published method falling 

under the <Enhanced Sampling= flavor which, given the increasing size of structurally solved 

systems (Berman, Vallat and Lawson, 2020), have seen more and more use in the last decade 

(Shen, Zhou and Shi, 2023). The idea of molecular sampling based on robotic algorithms 

emerged from the fruitful collaboration between Dr. Laurențiu Spiridon from our department 

(DBSB-IBAR) and Prof. David Minh from the Illinois Institute of Technology and Associate 

Director at the Center for Interdisciplinary Scientific Computation, collaboration which led 

to the development of the original method. 

The most significant benefit of sampling the conformational space of molecular systems 

at room temperature is the possibility to precisely estimate the binding free energy of 

molecular complexes. This is why the final part of the thesis is dedicated to solving three 

intricate problems relevant in molecular medicine by combining modelling and simulation 

for calculating the binding free energies of protein-peptide and protein-ligand complexes in 

medical relevant systems. Along with the modelling and simulation steps, this work relies 

on a diverse set of free energy computation techniques, ranging from endpoint methods 

(MM-GBSA) to methods based on alchemical transformations (HRE/MBAR) sampling.  

The first chapter of this part is dedicated to the modelling of Thrombopoietin 

Receptor (TpoR 3 of unknown structure at that time of publication) and its interaction with 

mutant calreticulin, an interaction which was shown to be responsible for ~40% of 
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myeloproliferative neoplasms. This work is the result of a longstanding collaboration 

between DBSB-IBAR and the Cell Signaling group at the Université Catholique de Louvain 

headed by Prof. �tefan N. Constantinescu which provided the HDX experimental constraints 

and validated our structural predictions, predictions which were further recently confirmed 

by cryo-EM results on the TpoR structure (Tsutsumi et al., 2023a; Sarson-Lawrence et al., 

2024).  

This is followed by a chapter featuring the use of such free energy computations in 

immunobiology in a work that has resulted from the collaboration of our DBSB department 

with the Department of Molecular Cell Biology of IBAR related to the recognition by the T-

Cell Receptor (TCR) of an HLA system loaded with tyrosinase YMD epitope (369-

YMDGTMSQV-377) which was shown to be relevant in melanoma. In this study we first 

assessed the formation of HLA-YMD complex and zoomed out afterwards to looking at the 

ternary complex which forms when the HLA-YMD system interacts with the hyper-variable 

region of the TCR, alchemical methods were used to sample its conformational space and 

Multistate Bennett Acceptance Ratio was used to compute the Binding Free Energy. 

The final chapter of this part features the use of free energy estimations in 

pharmacology and is dedicated to a work performed within the framework of the 

collaboration of our DBSB department with the group of Prof. Bogdan Amuzescu from the 

Faculty of Biology of the University of Bucharest on the interaction of NaV 1.5 ion channel 

with cenobamate, a small molecule used as an antiepileptic drug. In this work modelling of 

the ion channel was performed by Dr. Amuzescu9s team, as well as the initial molecular 

docking of the cenobamate ligand to the ion channel, while we performed the generation of 

the mutant structures, system construction (i.e. building the lipid bilayer, embedding the 

different channels into it, parametrizing the system) and the molecular dynamics simulations.  

Using the generated trajectory, binding free energies were computed between the 

native/mutant forms of the receptor and the cenobamate molecule using equally-spaced 

frames from the MD simulation.  
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PART II – PROTEIN STRUCTURE PREDICTION AND 
MODELLING 

CHAPTER 2 –  ASSESSING THE LIMITS OF NOVEL AI BASED 

STRUCTURAL PREDICTION METHODS  

1. Introduction 

Structural biology has seen a transformative boost at the dawn of the 2020s with the 

advent of automatic Deep Learning Modelling techniques such as AlphaFold2 & 3 (AF2/3) 

(Jumper et al., 2021; Abramson et al., 2024), RoseTTAFold All-Atom (Krishna et al., 2024) 

(RFAA) or OmegaFold (Wu et al., 2022) (OF) that superseded traditional manual homology 

modeling workflows. The AF & RFAA methods rely basically on the same workflow as 

traditional homology modeling steps which include multiple sequence alignment (MSA), 

searching for templates and mitigating between them in building models of a target sequence 

based on a massive Neural Network training aimed at optimizing the local structure and 

amino acid contacts. On the other hand, OmegaFold takes a different approach predicting 

the structure of a protein directly from its single primary sequence by using a protein 

language model based on a geometry-inspired transformer. One of the most important 

advantages of all these methods is the speed in proposing structural models of a given 

sequence. In matter of hours for AF & RFAA or even minutes for OF anyone can get 

predictive models of a protein sequence. Many reviews highlight also the high accuracy of 

such automatic models especially in the case of single domain targets which are highly 

homologous to existing experimentally solved structures. On the other hand, such automatic 

procedures return blunt, black-box models and deny any human intervention driven by extra 

experimental constraints or information, or by the flair and gained experience of a researcher 

which, especially in remote homology cases, might be relevant. 

By contrast, traditional manual homology modelling is far more tedious and may 

result in less optimized structures but has the advantage of being far more flexible allowing 

researchers on one hand to take into account experimental constraints or any other 

experimental observations and on the other hand to refine models by experimental 

hypothesis testing in a trial-and-error manner, and therefore driven by a heuristic approach. 

Thus, heuristic modeling is prone to better tackle remote homology targets or more complex 
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systems such as state dependent protein structures, multidomain proteins or hetero-

molecular systems. 

In this context, given that over ~60% of known proteomes comprise complex protein 

sequences exhibiting more than one structural domains it is highly relevant to determine how 

well the novel AI driven structural prediction platforms preform on such systems and better 

understand their limitations in generating overall plausible structural models and find ways 

to increase their prediction capabilities especially when such proteins were shown to adopt 

multiple conformations along their functional cycle. In other words, it is highly instructive 

to understand how automatic predictors work in cases in which in structural databases the 

same protein was solved in multiple structural states and modeling faces a multivalued 

sequence to structure (1D²3D) mapping problem. 

A good case study to assess the performance of the novel AI platforms on more complex 

protein systems, on which heuristic modelling was shown to be effective, is that of the multi-

state, multi-domain protein family of CNL NOD-Like (Coiled-Coil Nucleotide-Binding 

Oligomerization Domain-Like) receptors. Basically, these proteins consist of three canonical 

domains with casual N-terminal or C-terminal extensions:  

(1) a CC (Coiled Coil) <connector= 

(2) an NBD (Nucleotide Binding Domain) <switch=  

(3) an LRR (Leucine-Rich Repeat) <sensor= 

In turn, upon activation (induced by a pathogen molecular effector) the NBD <switch= 

suffers an internal conformational transition in which the Arc2 subdomain rotates 180º 

around the NBS-Arc1 region by releasing the ADP cofactor (specific to the inactive state) 

and exchanging it with an ATP that stabilizes the active conformation.  

 
Figure 2-1. Active (6J5T) and inactive (6J5W) conformations of the ZAR1 protein, aligned using the NBD domain. 
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2. Extended A. Thaliana family 

In order to test the performance of AI-driven modelling, we selected a set of 

representative A. Thaliana CNL proteins. We retrieved a set of 1257 sequences from the 

NLRScape (Martin et al., 2023) web server, which we filtered by domain organization, 

discarding any that did not contain all 9 CNL motifs. The resulting set was clustered using 

MMSeqs2 at 70% coverage and 70% identity, resulting in 36 groups, of which 4 were 

eliminated. 

The 32 representative sequences were then modelled using locally installed 

AlphaFold2 (AF2) and OmegaFold (OF); and over the web using AlphaFold3 (AF3) and 

RoseTTAFold All-Atom (RFAA) via the NeuroSnap servers. Additionally, models of these 

sequences were retrieved for comparison from the AlphaFold Database (AFDB) (Varadi et 

al., 2024). Given that novel AF3 and RFAA web implementations allow protein modeling 

along with their ligands we used them to model the 32 CNL both bare and in interaction with 

ADP and ATP. All structures were minimized using OpenMM (Eastman et al., 2024). Model 

quality was asses using MolProbity (Williams et al., 2018). The RFAA models were very 

low quality and simulated annealing was unsuccessfully used to attempt to improve them. 

These were stable and were confined in a conformational pool of no more than 2Å. 

3. ZAR1 – Comparison of models to solved structure 

Since ZAR19s structure has been solved, it offers us the ability to directly evaluate 

the performance of the above software. The CC domain has been solved in both <active= and 

<inactive= conformations. The two structures present different CC domains, as can be seen 

in Figure 2-2. As such, default AF2, AF3, RoseTTAFold All-Atom and OmegaFold 

generated a structure that combines features from both of them into an implausible model.

 
Figure 2-2. Comparison between active, inactive Cryo-Electron Microscopy solved structures and model retrieved from 
the AlphaFold2 Database 
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Model Name CC NBS-Arc1 ARC2 LRR 
AF2 3 Database 14.46 1.86 1.63 1.45 

AF2 3 Active Control 1.39 0.49 0.42 0.53 
AF2 3 Inactive Control 18.51 1.86 1.51 0.84 

AF2 3 Active MSA 1.55 0.59 0.61 0.96 
AF2 3 Inactive MSA 14.40 1.79 1.53 0.97 

AF3 3 ADP 14.41 1.80 1.64 1.42 
AF3 3 ATP 14.39 1.89 1.58 1.33 

AF3 3 No Ligand 14.45 1.92 1.59 1.51 
RFAA 3 ADP 14.42 2.04 1.64 1.86 
RFAA 3 ATP 14.50 2.05 1.78 2.02 

RFAA 3 No Ligand 14.45 1.92 1.65 1.96 
OmegaFold 14.48 1.87 1.33 3.11 

Table 2-1. Per domain RMSD(Å) for the highest ranked model of ZAR1, using the "active" state as reference. 

Model Name CC NBS-Arc1 Arc2 LRR 

AF2 – Database 12.42 1.33 0.88 1.34 

AF2 – Active Control 19.19 1.89 1.45 0.78 

AF2 – Inactive Control 0.80 0.69 0.35 0.47 

AF2 – Active MSA 18.48 1.88 1.51 0.90 

AF2 – Inactive MSA 12.54 0.86 0.44 0.75 

AF3 – ADP 11.99 1.31 0.98 1.22 

AF3 – ATP 12.11 1.35 0.87 1.16 

AF3 – No Ligand 12.08 1.26 0.93 1.37 

RFAA – ADP 12.74 1.41 1.02 1.77 

RFAA – ATP 12.65 1.53 1.04 1.92 

RFAA – No Ligand 12.36 1.42 1.11 1.89 

OmegaFold 12.99 1.24 0.87 3.04 
Table 2-2 Per domain RMSD(Å) for the highest ranked model of ZAR1, using the “inactive" state as reference 

Model Name RMSD vs active RMSD vs inactive 

AF2 3 Database 22.158 6.004 
AF2 3 Active Control 0.832 23.036 

AF2 3 Inactive Control 22.612 0.675 
AF2 3 Active MSA 1.271 22.873 

AF2 3 Inactive MSA 21.997 5.837 
AF3 3 ADP 22.119 5.785 
AF3 3 ATP 22.076 5.879 

AF3 3 No Ligand 22.191 5.889 
RFAA 3 ADP 22.406 6.756 
RFAA 3 ATP 22.646 6.792 

RFAA 3 No Ligand 22.424 6.027 
OmegaFold 22.374 6.442 

Table 2-3. Global RMSD(Å) for the highest ranked models for each generation method, relative to the active/inactive 
crystal structure 

The models9 LRR domains show an accurate beta-sheet network, but a higher 

propensity to form compact helical structures than the solved crystal structures.   
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When comparing Global RMSD values, it clearly appears that the AI models have a 

tendency to model CNLs in the <inactive= state which is more compact. This might drive the 

network towards the form that minimizes the exposed surface and is more energetically 

favorable. Additionally, the models present a propensity to over compact the structure, 

judging from the tighter binding between the domains, as measured using the Prodigy 

software (Vangone and A. M. Bonvin, 2015; Xue et al., 2016) 

4. Analysis of the extended CNL set models 

The other CNL sequences were modelled using the same procedure described for 

ZAR1 above.  Since the system has multiple possible states, it was important to study the 

conformation each software generates for each sequence.  

We mapped the position of the CC, Arc2 and LRR domains9 center of mass and the 

plane formed by the <VG= motif (the start of the NBS domain), the NBS9 and the Arc19s 

centers of mass (origin plane). Using this 3D representation, we can successfully distinguish 

the <active= from the <inactive= conformations. This distribution is presented in Figure 2-3, 

for a subset of models.  

 
Figure 2-3. Distribution of the CC (brown dots), Arc2 (blue dots) and LRR (brown dots) domains relative to the same 
domains of the experimental structures (green triangle, circle and star are active CC, ARC2 and LRR respectively; red 
triangle, circle and star are inactive CC, ARC2 and LRR respectively) 

As presented, all models on the <EDVID= branch adopt either an <inactive= or an 

<active= conformation, with a strong bias towards the compact <inactive= model. Also, 

modelling in the presence of ATP does not generate the <active= conformation, indicating 

that ligand specificity is not taken into account by either AF3 or RFAA. In contrast, the 

<RPS5= branch models display a very different and much more scattered distribution than 

the <EDVID= branch. A detailed analysis of this branch reveals that the CC does not interface 

with the NBD or LRR domains, pointing to a different signaling mechanism. For CNL 

inactive 

active active 

inactive 
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proteins from other families  (Solanum tuberosum, Triticum aestivum and Hordeum 

vulgare), the bias for the =inactive= form holds. 

5. Correcting output prediction by input filtering in multistate situations  

In order to drive the network towards a plausible conformation and away from the 

<chimeric= structure of the CC presented above, we enriched/restricted the input data that 

AlphaFold2 draws features from. By firstly adding more recent solved structures of Nod-

like receptor proteins from the PDB and classifying them as either <active= or <inactive=, we 

were able to drive the network towards one of these conformations. Secondly, given that 

both the CC and the LRR domains have well-defined architectures 3 CATH (Waman et al., 

2024) designations 1.20 Up-Down Bundle and 3.80.10 Leucine-Rich Repeat respectively 3 

the AF2 PDB snapshot was filtered to contain only proteins containing at least one of these 

domains, with only this reduced set being used. Further, given that the MSA generated 

should reflect features specific to NLR proteins, only NLR sequences were used as input. 

Regarding the ZAR1 sequence, models generated with these input filtering methods 

in place are much closer to the crystalized structures, as measured by RMSD (Table 2-1 and 

Table 2-2): the CC domain is modelled after the Active conformation in both of the <active= 

sets, while the <inactive= form is properly modelled when no MSA is fed into the network 

(Inactive Control) 3 as reflected in the global RMSD values (Table 2-3). However, all other 

domains have lower RMSD to their respective experimentally solved structures than any of 

the other generated models.   

The extended CNL set also benefited from this input filtering, as distinct <active= 

and <inactive= models were built for all sequences. 

6. Conclusions 

At the domain level, the folded structures of the NBD-Arc1, Arc2, and LRR modules, 

which belong to the CATH 3.40.50.300, 1.10.533.10, and 3.80.10 topologies respectively, 

have been predicted with an accuracy of less than 2 Å by all evaluated platforms. However, 

in the CC region, the RMSD from the experimental structure is greater than 12Å. Analysis 

of the solutions provided by AI platforms for this region suggests that they combine 

structural information from both the ADP-Inactive and ATP-Active structures of ZAR1. 

At the global level, it has been shown that AI driven methods favor the more 

compact, inactive state. Only by selectively filtering the input with specific structural data, 

could models for the active state of all the CNL proteins be generated. Notably, the inclusion 
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(or exclusion) of the ligand did not bias the network in favor of any conformation, which 

indicates that the AF3 and RFAA pipelines only account for ligand position after modelling 

the surrounding receptor, thereby ignoring any <induced fit= effect. Incorporating ligand data 

into these pipelines represents an important step in modelling proteins with multiple meta-

stable states. 

The work described here outlines a protocol for driving fast AI-based modelling 

towards desired conformations, without the computational cost of retraining a neural 

network. Speaking of retraining, it is important to note that AlphaFold (or rather DeepMind) 

does not provide training scripts or training data, making generation of specifically-trained 

networks impossible. On this note, there have been efforts in opening up these kinds of 

software, such as the OpenFold (Ahdritz et al., 2024) software, which allows for retraining 

and produces results on par with AlphaFold2. Additionally, it provides a computationally 

efficient method of generating proteins in multimer conformation (such as the <active= CNL 

conformation), without the computational cost of running AlphaFold2-Multimer, which for 

modelling a pentameric structure would be prohibitively high. 

  

PART III – BEYOND STRUCTURE PREDICTION - 
CONFORMATIONAL SAMPLING BY MOLECULAR 
SIMULATION 

CHAPTER 3 – IMPROVED SAMPLING VIA USE OF GIBBS 

SAMPLING ON INTERNAL DOFS 

1. Materials and methods 

The software described in this part is the Robosample software , developed by 

Spiridon et al (Spiridon et al., 2020). It applies high-performance constrained dynamics 

algorithms to the simulation of biologically relevant systems. It applies a mix of Blocked 

Gibbs sampling with HMC 3 Constrained Dynamics Hamiltonian Monte Carlo (CDHMC) - 

to efficiently sample conformational space.  

 It uses internal Bond/Angle/Torsion (BAT) coordinates to sample the conformational 

spaces of complex biological systems much more efficiently than traditional MD simulation. 

The original Constrained Dynamics Hamiltonian Monte Carlo (CDHMC) paper (Spiridon 

and Minh, 2017) outlines how the use of Gibbs sampling together with BAT coordinates 

allows for the correct recovery of the Boltzmann Distribution.  
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 In Robosample, atoms or groups of atoms are grouped together to form =rigid 

bodies=, meaning that none of their internal coordinates are allowed to vary. Different rigid 

bodies are bound together via different joints (such as Pin, Spherical or Cartesian). In this 

way, a robot graph (rigid bodies and different types of joints) is overlayed on top of the 

chemical graph (atoms and bonds). By using different combinations of rigid body definitions 

and joint types, different subsets of the conformational space are sampled. By sampling 

correlated degrees of freedom together, a more efficient exploration of the conformational 

space can be achieved. 

 
Figure 3-1. Schematic representation of a Robosample simulation, consisting of M rounds, each with N worlds 

To evaluate the effectiveness of Robosample, we conducted simulations on two 

molecular systems: alanine dipeptide and a more complex model featuring the first glycan 

of the hepatitis C virus E2 protein (E2N1). In this model, the glycan is attached to an E2-

derived [-12 + 6] peptide at the ASN17 site. This glycan is believed to play a role in shielding 

the virus from the host immune system by either delaying or reducing recognition by anti-

E2 antibodies (Prentoe et al., 2019). 

The alanine dipeptide system was simulated in multiple blocking schemes: 

• All rotatable bonds made flexible, with either Pin (TD), Cylinder (CYL) or Ball joints 

3 <All Flexible= 

• Only the N-C³ and C³-C bonds made flexible, with either Pin (TD), Cylinder (CYL) 

or Ball joints 3 <Ramachandran Dynamics= 

In order to ensure ergodicity, the above six worlds were simulated together with a cartesian 

world. 

2. Results and discussions – Alanine Dipeptide 

Despite being small compared to other biomolecules, alanine dipeptide (N-

acetylalanine-N-methylamide) has a highly complex and frustrated potential energy surface 

(PES), making it a challenging system for molecular sampling techniques. Mapping its 

configuration space onto the φ and ψ dihedral angles helps retain the key maxima and 

minima of the PES while reducing complexity. As a result, the potential of mean force in the 
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φ/ψ domain is commonly used to evaluate the accuracy and efficiency of sampling methods 

(Montgomery Pettitt and Karplus, 1985). All simulations were able to recover the free energy 

surface of the ALA2 system. 

 
Figure 3-2 Free energy surfaces of ALA2, based on four types of HMC simulations: A - Fully Flexible, B - Mixed-RamaTD, 
C - Mixed-RamaBall, D - Mixed-RamaCYL 

The fact that the free energy surfaces are consistent among themselves shows that 

CDHMC simulations can recover free energy surfaces using either Pin, Cylindrical or 

Spherical joints, independent of the size of the bodies.  

The Mean First Passage Times between free energy basins provide insight into the 

relative efficiency of the simulations done. As can be seen in Table 3-1, the fully flexible 

simulation has the slowest overall transitions. The <All-Bonds= simulations perform better 

than the fully flexible, with the TD regimen performing best. Ramachandran dynamics 

outperforms the all-bonds dynamics. 
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From\To C5 PPII C7eq αL 

Fully Flexible 

C5 3.2 ± 0.2 9.1 ± 0.5 14.3 ± 1.7 5380.0 ± 285.0 

PPII 9.6 ± 0.9 5.7 ± 0.4 10.9 ± 1.8 5380.0 ± 285.0 

C7eq 16.5 ± 1.1 12.6 ± 0.6 2.8 ± 0.2 5370.0 ± 285.0 

αL 502.0 ± 195.0 499.0 ± 194.0 491.0 ± 194.0 14.1 ± 4.4 

Mixed-RamaTD 

C5 1.8 ± 0.03 4.0 ± 0.1 2.8 ± 0.1 631.0 ± 92.2 

PPII 2.5 ± 0.1 3.2 ± 0.1 2.6 ± 0.1 631.0 ± 92.2 

C7eq 3.2 ± 0.2 4.7 ± 0.2 1.5 ± 0.02 630.0 ± 92.2 

αL 50.9 ± 1.1 52.4 ± 1.2 49.4 ± 1.1 8.3 ± 1.3 

Mixed-RamaCYL 

C5 2.3 ± 0.03 5.2 ± 0.1 3.5 ± 0.02 615.0 ± 33.6 

PPII 3.2 ± 0.1 4.1 ± 0.1 3.3 ± 0.005 615.0 ± 33.4 

C7eq 4.1 ± 0.1 5.9 ± 0.1 1.9 ± 0.01 614.0 ± 33.6 

αL 46.4 ± 4.5 48.4 ± 4.6 44.7 ± 4.7 12.0 ± 1.4 

Mixed-RamaBall 

C5 2.4 ± 0.01 5.2 ± 0.01 3.1 ± 0.1 518.0 ± 18.6 

PPII 3.1 ± 0.01 4.1 ± 0.04 3.0 ± 0.1 518.0 ± 18.5 

C7eq 3.7 ± 0.01 5.6 ± 0.02 1.9 ± 0.02 518.0 ± 18.4 

αL 37.0 ± 1.4 39.1 ± 1.5 35.8 ± 1.6 12.8 ± 1.0 

Table 3-1 Average Mean First Passage Times (MFPT) of Fully Flexible and Ramachandran simulations, expressed in 
molecular dynamics steps. Note: in the original paper, these were divided by 200 to be comparable to the paper originally 
describing the CDHMC method. 

3. Results and discussions – E2N1 Glycoprotein 

Figure 3-3 shows that in the same amount of time, mean value and fluctuations of 

the RMSD are much larger for the CDHMC simulations than for the fully flexible HMC 

simulations. An overlap of a subset of frames shows a clearer difference between the two 

methods (Figure 3-4). 
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Figure 3-3 RMSD Timeseries for MD (Top) and HMC (Bottom) simulations 

 
Figure 3-4 Overlapped frames from MD (A) and HMC (B) trajectories. For clarity, only the polysaccharide coordinates  
have been included from all frames, with the polypeptide kept from the first frame 

4. Conclusions 

The results presented in this work suggest that Robosample provides a robust 

framework for performing constrained molecular simulations while ensuring ergodicity 

through Gibbs sampling. Beyond the traditional torsional and angle/torsion mobilities 

commonly used in constrained simulations (Vaidehi and Jain, 2015), Robosample expands 

the range of motion by incorporating additional robotic mobility types, leveraging the 

mechanical joints available in Simbody. This enables the exploration of arbitrary degree-of-

freedom (DOF) couplings, including weak bond/torsion interactions found in cylindrical 

joints. 

It has been shown that through parameter optimization and different joint types, the 

software is able to reproduce the ALA2 free energy surface in a more efficient way than is 

possible via classical MD simulation. Additionally, Ramachandran dynamics using spherical 

joints, which have not been used in other internal DoF MD software, have the shortest MFPT 

for the rarest transition.  
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Using an actual system (the E2N1 glycoprotein), we have shown that exploration of 

the conformational space of highly flexible structures can be more efficiently sampled if 

Robosample is used. The fact that using alternating constraints speeds up space exploration 

means that there is, in theory, an optimal combination of Gibbs blocks which may explore 

any space faster than simple MD. Currently, we are exploring the use of Replica Exchange 

in tandem with the HMC algorithm, in order to overcome larger potential energy barriers. 

PART IV – USING MODELING AND SIMULATION 
FOR INVESTIGATING COMPLEX MOLECULAR 
INTERACTIONS 

CHAPTER 4 – MODELLING THROMBOPOIETIN RECEPTOR 

COMPLEXATION BY MUTANT CALRETICULIN 

1. Introduction 

In the current chapter, we employed an integrative strategy to dissect the molecular 

mechanism by which del52/ins5 calreticulin mutants (mCALR) specifically and persistently 

binds to TpoR and to shed light on how this interaction drives TpoR dimerization and 

activation. Understanding how frameshift mutations in a key chaperone result in novel 

binding capabilities is crucial both from a conceptual standpoint and for therapeutic 

development. In order to reveal the molecular basis of the formation of a permanent TpoR-

mCALR complex we proceed to accurately modelling the two players in an effort to locate 

putative hotspots responsible for their interaction as presented below. 

2. TpoR Homology Modelling 

In the first stage, the TpoR sequence was analyzed in order to generate multiple 

secondary structure profiles, solvent accessibility profiles and intrinsic disorder profiles. 

These profiles were used to refine the alignment between the target sequence and the 

templates used.  

The next stage consisted of searching homologous structures to be used in homology 

modelling. Thus, the TpoR sequence was subject to searches by molecular threading, using 

PHYRE2 (Kelley et al., 2016). The first result (RCSB Code: 1ERN (Livnah et al., 1999)) is 

a crystal of the Erythropoietin Receptor (EpoR). 20 EpoR structures were gathered from the 

RCSB database, and the 1CN4 (Syed et al., 1998) structure was chosen to be used as 

template for the membrane-distal Cytokine Receptor Module (CRM). It presents around 

25% identity to the TpoR sequence. Even though the target sequence can be modelled via 
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homology modelling, using EpoR, it displays a large, 65 amino acid-long insertion in its 2nd 

domain, for which no homologous structures were found. Interestingly, automatic models 

generated with the state-of-the-art platform AlphaFold2 were unrealistic. The solution 

proposed for this 65aa insertion was a random coil wobbling apart from the main folded 

body of TpoR, being completely accessible to the solvent despite its sequence secondary 

structure and accessibility propensities. 

 
Figure 4-1 Comparison between AlphaFold2 model and our heuristic model. The purple part represents the 65aa 

insertion. The glycans are represented using sticks. 

Hence, in order to more realistically model this insertion, searches for more 

appropriate molecular architectures were employed. The reference structure, EpoR, displays 

a ³-sandwich-type architecture, in which one of the faces has 3 extended structures and the 

other has 4 (³-sandwich 3/4). This architecture is part of the CATH 2.60.40.10 superfamily, 

which also includes ³-sandwich 4/5 architectures. The assumption that TpoR adopts such an 

architecture started from the observation that 2 extended structures were predicted in the 

large insertion of the TpoR sequence. Thus, a 4/5 ³-sandwich architecture was proposed for 

TpoR. The immunoglobulin group of the 2.60.40.10 superfamily is known for adopting this 

architecture, with the same topology as the one proposed. The CATH representative for the 

immunoglobulin group is the 2E8 antibody for the LDL receptor, RCSB Code: 12E8 

(Trakhanov et al., 1999). 

The membrane-proximal CRM of the TpoR extra-cellular domain (ECD) was 

modelled using the AlphaFold2 software, which was run on our local computational cluster. 

The generated model was attached to the CRM 1 model, using MODELLER v.9.12 (Webb 
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and Sali, 2018). 4 cysteine sulfide bonds were added based on distance between neighboring 

cysteine residues. 

The transmembrane domain (TMD) was modelled after the E chain of the crystal 

structure with the PDB ID: 6S1K (Cassidy et al., 2020). This crystal structure was found by 

using BLAST on the sequence of TpoR's TMD. This was done in order to generate a realistic 

helical structure. The TMD was attached to the ECD using MODELLER. The TMD's tilt 

angle, relative to the hypothetical membrane it's supposed to traverse was chosen in order to 

be consistent with experimental data provided (i.e. the distance between adjacent L508 

residues should be at most 6Å) and in order to form a cross-shaped dimer similar to the one 

found by (Defour et al., 2013). 

The CALR del52/ins5 monomers were generated using AlphaFold2, and the CALR 

dimer was generated using RosettaDock (Lyskov and Gray, 2008). 

3. Assessing TpoR-CRM1 interaction with mutant Calreticulin. 

Sequence analysis of the TpoR D1D2 shows an excess of negative charges. 

Conversely, the C-terminus of CALR del52 is strongly positive. As such we posited that the 

interaction detected between CALR and TpoR could be electrostatic in nature.  

 Through an extensive workflow that involved multiple molecular docking runs, 

molecular dynamics and simulated annealing simulations, 3 binding poses were determined 

for the TpoR/mCALR C-terminus dimer. Through the use of Prodigy (Vangone and A. M. 

J. J. Bonvin, 2015; Xue et al., 2016) and MM-GBSA (Kollman et al., 2000), these were 

ranked and the highest ranking one was used to generate the complete tetramer model, which 

was further embedded into a POPC membrane and fully solvated. 
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Figure 4-2 Fully solvated TpoR – mCALR system, composed of around 1.5 million atoms. 

The CALR ins5 mutant was generated following the same procedure. 

The system9s stability was tested via a 100ns MD simulation. The number of contacts 

between the TpoR glycan and the CALR remained consistent. 

4. Conclusions 

The work presented reveals mechanistic insights into the recognition and subsequent 

activation of the Thrombopoietin Receptor by pathogenic mutants of calreticulin, triggering 

myeloproliferative neoplasm. The structural model we created shows that the binding 

happens on two distinct sites: a physiological CALR/N-glycan binding, which is not specific 

to the TpoR/CALR pair, and an electrostatic-driven interaction, which is much more stable 

and leads to blood pathologies. The activation mode we propose can be used in further 

studies in the development of targeted therapies, targeting, for instance, the N-terminus of 

the CALR molecule. 

The method we employed in discovering the conformation of the TpoR/CALR del52 

complex highlights an interesting <anaconda= effect of the CALR molecule. The C-terminus, 

positively charged as it is, performs a slither-like motion around the membrane distal CRM 

of the TpoR, until it gets <stuck= on one of the two acidic patches. It is tempting to posit that 

this way of binding is not unique to this protein pair and may be used as a starting assumption 

when studying other protein/protein interactions with biological significance.  

As a final remark we would like to mention that an experimental cryo-EM structure 

of TpoR released several months after the publication of our tetramer 2x(TpoR-mCALR) 
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model (Tsutsumi et al., 2023b) confirmed the predicted TpoR structure included in our more 

complex overall heteromolecular glycoproteic model, as can be seen from Figure 4-3. 

Moreover, the cryo-EM structure lacks the glycan moiety which 3 based on MS experimental 

data 3 is included in our model. Even more important 3 the protein core of TpoR in our 

heuristic model matches the cryo-EM structure better than the automatic TpoR structural 

solution proposed at that time by AlphaFold2 as discussed previously (Figure 4-1). 

 
Figure 4-3 Structure alignment between generated model (green and yellow) and solved structure (magenta – RCSB Code: 
8G04) of TpoR ECD. 

CHAPTER 5 – OXIDATION OF TYROSINASE EPITOPE AND ITS 

EFFECT ON T CELL REACTIVITY IN MELANOMA 

1. Introduction 

Intricate bioinformatics and biocomputing workflows can also be used in endeavors 

related to an in depth understanding of protein 3 ligand interactions when the ligands are 

complex flexible peptides. 

This chapter presents our endeavor on unraveling the molecular mechanisms leading 

to the increase in binding free energy of the ternary immunity complex HLA-YMD-TCR 

upon YMD oxidation - were YMD is the peptide 369-YMDGTMSQV-377 derived from 

tyrosinase. This presentation is headed by a brief introduction on the three molecular players 

and the context of this study. 

The HLA, MHC I proteins are heterodimers, composed of two protein chains, ³ and 

³-microglobulin. The ³ chain consists of three modules, each playing a distinct role in its 

interaction with special receptors found on the surface of the T cells. The ³3 chain is the 

only transmembrane chain in the MHC I structure, and it is also responsible for the non-
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covalent binding to the ³-microglobulin chain. In addition, the ³3 region interacts with the 

CD8 receptor found on the surface of T cells. This interaction temporarily blocks the MHC 

complex while the T cell checks the antigenicity of the peptide bound to the groove that 

opens between the ³1 and ³2 domains (Hewitt, 2003). 

The T-Cell Receptor (TCR) is a heterodimer composed of two chains, ³ and ³. In very 

rare cases, it can consist of ´ and · chains instead. The ³ and ³ chains each have two distinct 

regions: 

• A constant region, located closer to the T cell membrane (but still extracellular) 

• A variable region, which contains three hyper-variable segments that determine 

peptide complementarity (CDR) and are responsible for binding the antigenic 

peptide. 

2. Modeling of ternary complex, parameter generation for YM2M6D, HREX 

Broadly speaking, the computational work was done in three stages: 

• Modelling the HLA-A02:01/YMD binary system, in both native (WT) and 

M2SOM6SO forms 

• Modelling the HLA-A02:01/YMD/TCR ternary system, in both forms 

• Computing the binding free energy of the YMD peptide to the ternary complex. 

For the HLA/YMD complex the selection process identified YLSPIASPL (Y9L) and 

MLIYSMWGK (A14) as the best-fitting templates. 

• Y9L (PDB: 5F9J) is naturally bound to HLA-A*02:01, making it a strong match for 

the experimental haplotype. Additionally, it aligns well with the hydrophobicity and 

volumetric profiles of YMD and features a tyrosine at position 1, which engages in 

a stacking interaction with HLA, just like YMD. 

• A14 (PDB: 4N8V) originates from the Virion membrane protein A14 and was chosen 

due to the presence of methionine at position 6, mirroring YMD. However, this 

structure is associated with HLA-A*11, which differs from the experimental 

haplotype. 

Both templates contain hydrophobic residues at positions 2 and 6, which are involved in 

oxidation and interact with HLA. However, their spatial arrangements within the HLA 

binding groove are distinct: 

• In Y9L, the side chain at position 6 points directly toward the groove. 

• In A14, the side chain at position 6 is oriented parallel to the surface. 
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These differences provide an opportunity to assess how initial binding configurations 

influence free energy estimates. 

Given that from all the possible oxidized forms of the YMD peptide, it was shown 

through HPLC experiments that M2SOM6SO was the predominant form, four models of the 

binary complex were built: 

• HLA/YMD Native with M6 pointing towards the HLA groove/towards the solvent 

• HLA/YMD oxidized, with the M6 pointing towards the HLA groove/towards the 

solvent 

3. Modelling the HLA/YMD/TCR ternary complex 

The construction of ternary HLA-YMD-TCR complex models was carried out in two 

sequential steps: 

• TCR Assembly: Models incorporating patient-specific clone 3 CDR loops (TCRc3) 

were generated using a joint fragment-based homology modeling approach. 

• Docking: The TCRc3 model was docked onto the four HP binary complexes created 

in the initial phase. 

To construct the TCRc3 model, the HP/HPT-DB database was screened for structurally 

similar candidates corresponding to the patient-specific clone 3 CDR regions. Sequence 

analysis revealed that different CDR loops and constant regions had varying best matches in 

terms of sequence homology. Consequently, a joint fragment-based homology modeling 

strategy was implemented, following methodologies outlined previously (Slootweg et al., 

2013; Rajaraman et al., 2016).  

Four reference structures (PDB IDs: 5HHM, 3PWP, 2PYE, and 2BNQ) were selected: 

• 5HHM and 3PWP were used to construct the ³- and ³-chain conserved scaffolds 

respectively. 

• 2PYE and 2BNQ served as templates for assembling the CDR loops of TCRc3 

All HLA-A*02:01 and TCRc3 models were generated using MODELLER v9.21. In 

brief, variable loops bridging the sequence-conserved regions (SCRs) were iteratively 

optimized via MODELLER9s loop refinement protocol. Sequence-variable regions were 

subjected to repeated simulated annealing and energy minimization and final models were 

validated using the MolProbity server, yielding scores of 0.59 for HLA and 1.00 for TCR, 

confirming their structural quality. 
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Figure 5-1 Generated HLA/YMD/TCR models, with M6 pointing towards the TCR (↑ configuration); A - Native; B – 
Oxidized 

4. Binding free energy calculation 

In this phase, Absolute Binding Free Energy estimates were obtained using 

Hamiltonian Replica Exchange (HRE), where thermodynamic states were progressively 

scaled between a fully coupled and a fully decoupled ligand state. This process involves an 

alchemical transformation, in which the interactions exerted by HLA and TCR on YMD are 

gradually weakened until they are completely eliminated. The two HLA/YMD/TCR 

complex models (with wildtype YMD and oxidized YMD) were subjected to a total of 472.5 

ns of simulation, across 135 replicas. A replica exchange would be attempted every 10-3 ns. 

The fully coupled trajectories were further used for differential structural analysis, including 

stability analysis, cluster count analysis and solvent accessibility analysis. 

The binding free energy calculations were performed using YANK (Wang et al., 

2013), leveraging Hamiltonian Replica Exchange (HRE) for enhanced sampling. The 

Multistate Bennett Acceptance Ratio (MBAR), implemented via the PyMBAR (Shirts and 

Chodera, 2008) package, was used to compute binding free energies. The number of replicas 

and their scaling parameters were determined automatically using YANK9s trailblazing 

module. The peptide was kept inside the binding site by adding harmonic restraints, which 

would appear before the nonbonded parameters would disappear. 

The binding free energy differences (���) were estimated using a thermodynamic cycle 

that involves the free binding energies of both forms. The energy difference on the right-
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most arrow represents the difference in binding energy given by the oxidation of the 

methionine residues. 

 
Figure 5-2 Thermodynamic cycle on which the estimation of oxidation effect was based. 

The results of the MBAR calculation are presented in Table 5-1 �� N ± �� M2SOM6SO ± �� N ³ �� M2SOM6SO ³ 

-43.070 +/- 1.085 -43.277 +/- 0.595 317.097 ± 0.669 321.05 ± 0.557 ���± ���↓ 

~0.0 KCAL/MOL ~ 34.0 kcal/mol 

Table 5-1 Absolute Binding Free Energies for the four systems. 

Analysis of Table 5-1 reveals that only the binding free energy difference in the 

8down9 (³) configuration (���³) is statistically significant. This suggests that the 

experimentally observed shift in equilibrium toward the oxidized form in the ternary 

complex is primarily driven by the YMD³ conformation. Given that oxidation at M6 

(M6SO) is expected to directly influence TCR binding, it is somewhat unexpected that the 

increased affinity for the oxidized form is mainly attributed to the 8down9 (³) configuration, 

rather than direct TCR interaction. However, binding free energy variations stem from 

complex thermodynamic equilibria, incorporating both enthalpic and entropic contributions, 

which result from a vast array of dynamic molecular interactions at room temperature.  

Through analysis of the <fully-coupled= replica, it was found that the mutant form of the 

peptide increased the local stability of the binding pocket. First, the water molecule stability 

was increased in the mutant form, as measured by water residency time and the average 

number of water molecules in the site for the two systems. 

 N ↓ M2SOM6SO ↓ 
Average 11.5 15.4 
St. Dev 5.8 5.1 

Table 5-2 Average number of water molecules around the native/mutant YMD peptide 
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Secondly, the RMSF of both the YMD peptide and the TCR CDR loops are lower in the 

mutated form: 

 
Figure 5-3 RMSF of the YMD Native/Mutant peptide and TCR CDR loops in the HLA/Native and HLA/Mutant complex. 

The vertical line separates the two CDR regions. 

5. Conclusions 

In the paper described in the current chapter, we generated a several models of the 

HLA: A0201/YMD binary complex and their ability to bind to a specific clone of a T-Cell 

Receptor. Not only did our computational results agree with the experimental findings 

(described in more detail in the paper), but through our models we were able to add insights 

into the underlying contribution of the sulfoxide moiety.  

It is important to note that a large number of approximations were made during model 

building. First of all, the fact that the complex consists of multiple molecules that were built 

through homology modelling, not taken from any crystal structures, adds an unyielding 

degree of uncertainty. This is exacerbated by the fact that the CDR loops are very highly 

variable, and are also directly involved in the binding. Moreover, the CD8 protein, which is 

involved in stabilizing the ternary complex, was not included in the model, given the lack of 

structural information on its relative orientation. 

In conclusion, computational data suggests that oxidation increases binding through 

an increase in local order of the interface, rather than through a direct interaction with the 

TCR. 

CHAPTER 6 – INTERACTION OF VOLTAGE-DEPENDENT NAV1.5 

CHANNELS WITH CENOBAMATE 

1. Introduction 

The present work presents a combination of molecular modeling and simulation 

techniques to investigate the effect of eight documented NaV1.5 channel point mutations 
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upon its interaction with cenobamate, a novel anti-epileptic drug, mutations known to 

produce QT distortions. More specifically, it describes the modelling of the NaV1.5 ³ 

domains, as well as eight significant point mutations, the accurate modelling of its 

environment and its equilibration through increasingly flexible MD simulations. It then 

describes the method by which we used MD and MM-PBSA to assess whether the mutations 

described can affect the binding of cenobamate. 

 Structurally, Voltage-dependent Na+ channels (Nav) consist of four homologous 

pore-forming ³ domains, each consisting of six transmembrane helices. Between the 3rd and 

4th ³ domains there is a short intracellular loop, which as an inactivation gate, blocking the 

pore from the inside during sustained membrane depolarization. 

2. Model Generation 

The model for the wildtype form of Na(v)1.5 was generated using AlphaFold2. The 

protein was embedded in the DPPC membrane using PACKMOL-Memgen (Schott-Verdugo 

and Gohlke, 2019). Explicit TIP3P type water with an ionic strength of 150 mM (composed 

of Na+ and Cl-) was used. An approximately 200A x 200A lipid patch was generated, with a 

17.5 water buffer above and below the protein, in order to ensure an appropriate cell where 

the cytosolic domain would not communicate with the extracellular domain across the 

periodic boundary.  

The mutant forms of the proteins were generated after equilibration of the wildtype 

form. The cenobamate ligand was parametrized using GAFF2. 

Docking of the cenobamate molecule to the different mutants was done using 

Autodock Vina 1.2.5 (Trott and Olson, 2009) 

Initial global minimization was performed using OpenMM. All molecular 

simulations were performed using NAMD3 (Phillips et al., 2020). Each of the 9 forms of the 

Na(v)-1.5 receptor-Ligand complexes were subjected to 100ns of MD simulation. 

Considering the size of the system, a timestep of 2fs was used and SHAKE was applied to 

the hydrogen bonds.  

To compute binding free energy, MM-PBSA calculations were performed. 

Calculation parameters were derived from similar use cases in other published work (Wang 

et al., 2022). 100 equally-spaced snapshots were used from each simulation. 
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3. Results – Modelling and Simulation 

The ³ domain of the human NaV1.5 was successfully modeled using AlphaFold2.  

The model was embedded into a 200Åx200Å patch of DPPC, the resulting system was 

solvated in an explicit water box, with a 17.5Å buffer above and below the protein. Na+/Cl- 

ions were added to neutralize the system and up to a concentration of 0.15M. The 8 mutants 

were generated after minimization and equilibration of the wildtype form. After generation, 

the mutants were minimized to ensure that no clashes would be present after the mutations 

have been done.  

 
Figure 6-1 NaV1.5 (cartoon representation) embedded in the lipid membrane (line representation). The water and ions 
have been hidden for clarity 

Over the 100ns explicit solvent simulations, the 9 models of NaV1.5 did not suffer 

any major conformational changes, as measured by the RMSD. 

RMSD analysis of the cenobamate molecule, docked to the different forms of the 

NaV1.5 protein show that only the N1463K mutation, during its equilibration period, allows 

the ligand to be more flexible, all other mutations make it more rigid than the wildtype form. 

The tighter binding exhibited with the mutant forms could indicate that there are enthalpic 

influences that drive the lower estimated �� values (Table 6-1). 

4. Results – Binding Free Energy Calculation 

The effect of point mutations on the binding of cenobamate to NaV1.5 has been 

estimated both via molecular docking and MM-PBSA. As presented in Table 6-1, the 

docking assays suggest that N927S, N1463K, N1463Y and M1766R bind cenobamate 

stronger than the wildtype. However, the MM-PBSA computations predict that all mutants 

bind the cenobamate molecule stronger than the wildtype, with the N932S mutant being the 

top candidate for binding. 
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MUTANT 
AVERAGE 

DOCKING SCORE 

(KCAL/MOL) 

ΔGBINDING 
MM-PBSA 

(KCAL/MOL) 
WILDTYPE -5.50 -9.0828+/-3.0573 

N927S -5.62 -11.6598+/-2.3896 
N932K -5.00 -11.6168+/-2.6316 
N932S -5.03 -14.394+/-2.0402 
L935V -4.83 -11.3162+/-2.7667 
S1458Y -5.11 -11.8996+/-2.2859 
N1463K -6.20 -11.8148+/-2.1851 
N1463Y -6.01 -11.0899+/-1.7401 
M1766R -6.03 -10.1092+/-2.0133 

Table 6-1 Estimated binding affinity of cenobamate to different forms of human NaV1.5 

5. Conclusions 

Cenobamate, a novel antiseizure drug, exhibits binding effects on the NaV1.5 

channel at clinically relevant concentrations. The presented work shows that the compound 

binds in the central cavity of the wildtype NaV1.5 and stronger to selected mutant variants. 

As such, mutations in the cardiac NaV1.5 channel should be considered when prescribing 

cenobamate, since mutations in said channel could lead to potentially fatal ventricular 

arrhythmias. 

Overall conclusions 

The present thesis describes the work undertaken during my PhD training in Dr. 

Petrescu9s Department of Bioinformatics and Structural Biochemistry at IBAR. This was an 

exciting time that concurred with groundbreaking progress in bioinformatics and 

biocomputing. This allowed me to get a grip on new state of the art techniques in molecular 

modeling and simulation and use them to get an in-depth insight into the behavior of several 

complex biomolecular systems relevant in molecular medicine. 

The first part of my work is dedicated to exploring the capabilities and limits of the 

new generation of DL driven structure prediction platforms in modeling of more complex 

multi-state, multi-domain protein systems 3 by taking as a case study a CNL NOD-Like 

receptor family from Arabidopsis thaliana on which our department has significant 

structural expertise and results over the past decade. Our results indicate that while such 

automatic modeling platforms show high accuracy in predicting the structure of sequence 

modules that do fold in well-known, validated topologies they fall short in predicting the 

configuration of all-alpha coiled-coil regions, remote homologues and regions lacking 

templates 3 were the more flexible manual heuristic techniques outperform automatic 

modeling.  
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We have developed AlphaFold2 information filtering workflows aimed to drive the 

modeling process toward specific configurations in multistate instances. This reveals two 

major research avenues, in tailoring the input data (sequences and structures) on a family-

by-family basis and in using multimer structural templates to generate monomer structures 

with multimer conformation, which is much less time-intensive and resource-consuming. 

Both of the described avenues will be explored further after my thesis defense, mostly 

by writing a fully-fledged pipeline that streamlines the selection of sequences and structures.  

Beyond modeling, which returns unique 'frozen' structures, the second part of this thesis 

presents my contributions to the development of Robosample 3 a highly efficient simulation 

platform of molecular conformational sampling based on robotic algorithms developed and 

coordinated in our Department by Dr. Laurențiu Spiridon.  

Robosample 3 which is the first Romanian molecular simulation platform 3 is an absolute 

achievement that is currently in full development and expansion. Hence, I intend to make 

Robosample my first and foremost work priority after my thesis defense by continuing to 

optimize the end-user experience and collaborating with others in the group research on new 

Gibbs block selections. Additionally, I plan to implement Hamiltonian Monte Carlo to 

complement the existing T-REX implementation and to explore the efficiency of the 

software for molecular docking simulations. 

The third part of my PhD work focusses on using molecular modeling and simulation to 

assess molecular interactions in complex biomolecular systems relevant in molecular 

medicine.  

For instance, the work on Thrombopoietin receptor and YMD peptide gave both practical 

insights into molecular mechanisms relevant in oncology by addressing aspects related to 

myeloproliferative neoplasms and melanoma, respectively. The first one identifies the 

molecular mechanisms by which a C-terminal frameshift in the Calreticulin gene, expressing 

a lectin chaperone in ER, induces the constitutive activation of a cytokine receptor, 

specifically the thrombopoietin receptor, while the second unravels mechanistic details 

related to the effect of oxidation on YMD tyrosinase epitope recognition, and why it has a 

greater effect on T-cell reactivity. The work on these systems firstly involved the generation 

of highly confident computational models of tetrameric/ternary complexes given that no 

adequate experimental structures have had been solved for either system at the time when 

the research was conducted. Moreover, these highly accurate models allowed binding free 

energy calculations to be performed for both systems through various molecular dynamics 

simulation-based techniques.  



32 
 

Finally, the third study highlights molecular modeling and simulation application in 

pharmacogenetics by describing our work on the voltage-dependent sodium channel and the 

effect of different mutations on the binding of cenobamate, a novel anti-seizure drug. Our 

binding free energy computations showed that cenobamate displays increased affinity to all 

mutants compared to wild type NaV1.5 channels and binds especially well to the N932S 

mutation. Thus, it would be best to be mindful of the presence of this mutation when 

prescribing cenobamate to epileptic patients. 

All in all, the results presented herein reveal on one hand the current trends in 

biocomputing method development and on the other hand the power of computational 

techniques in molecular life sciences research, especially when these are used in workflows 

that incorporate experimental results. 
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