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I. Introducere 

1. Îmbătrânirea 

Îmbătrânirea este un proces biologic complex, cu un impact profund asupra sănătății și a 
riscului de boală. Cercetările contemporane o consideră un fenomen reglementat, conturat de 
cele nouă „semne distinctive ale îmbătrânirii” interconectate (instabilitatea genomică, scurtarea 
telomerilor, modificările epigenetice, pierderea proteostazei, detectarea dereglată a nutrienților, 
disfuncția mitocondrială, senescența celulară, epuizarea celulelor stem și comunicarea 
intercelulară alterată)(1). Acest cadru este fundamental, ghidând investigarea mecanismelor 
celulare și a țintelor de intervenție. Căile cheie, conservate, care influențează îmbătrânirea 
includ semnalizarea insulină/IGF-1 și căile mTOR(2,3). Modularea experimentală a acestora, 
alături de intervenții precum restricția calorică (RC) și compușii care imită RC (rapamicina, 
metformina, terapiile bazate pe NAD+), a extins durata de viață la diverse modele(2,3). 
Înțelegerea îmbătrânirii are implicații largi pentru sănătatea publică, deoarece vârsta este 
principalul factor de risc pentru bolile cronice(4). Domeniul gerontologiei caută să vizeze 
mecanismele îmbătrânirii pentru a întârzia sau a preveni simultan multiple patologii(5). 
 
Îmbătrânirea este strâns legată de dezvoltarea majorității bolilor cronice (tulburări 
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neurodegenerative, boli cardiovasculare, sindroame metabolice, cancer)(6). Schimbarea 
demografică către populații mai în vârstă exercită o presiune asupra sistemelor de sănătate și a 
cheltuielilor, deoarece o mare parte din resurse este alocată gestionării bolilor cronice, legate de 
vârstă, în special la sfârșitul vieții(4). Sunt necesare strategii proactive, preventive. 
 
Obiectivul cercetării în domeniul îmbătrânirii se mută de la simpla extindere a duratei de viață 
(lifespan) la extinderea duratei de sănătate (healthspan) (anii trăiți în stare bună de sănătate) 
(7). Medicina actuală tratează de obicei bolile cronice izolat, ignorând rădăcina lor comună în 
procesul fundamental de îmbătrânire(6). O abordare mai holistică implică intervenția în 
mecanismele biologice ale îmbătrânirii în sine pentru a îmbunătăți rezultatele generale de 
sănătate și a reduce multimorbiditatea(1). Intervențiile care vizează căi legate de îmbătrânire, 
cum ar fi rapamicina, senoliticele și amplificatorii de NAD+, sunt studiate pentru capacitatea lor 
de a îmbunătăți sănătatea pe multiple domenii, acționând asupra semnelor distinctive ale 
îmbătrânirii (reciclare celulară afectată, inflamație, disfuncție mitocondrială)(8). 
 
Îmbătrânirea este un proces condus de o constelație de procese biologice de deteriorare, 
distilate în proeminentul model al „semnelor distinctive ale îmbătrânirii” ("hallmarks of aging") de 
către López-Otín et al.(1). Acest cadru conectează diverse evenimente celulare, cum ar fi 
deteriorarea ADN-ului, senescența, întreținerea deficitară a proteinelor și căile metabolice 
dereglate (semnalizarea insulină/IGF-1, mTOR, sirtuine)(1,9). Din perspectivă evolutivă, 
îmbătrânirea este explicată de teoriile acumulării mutațiilor, pleiotropiei antagoniste și a somei 
de unică folosință ("disposable soma"), care se concentrează pe presiunea selectivă și 
compromisuri (trade-offs)(10). Viziunile mecaniciste, precum teoria radicalilor liberi, se 
concentrează pe deteriorare, deși înțelegerea actuală este mai nuanțată(11). 
 
Tehnologiile Omice (genomică, transcriptomică, proteomică, metabolomică, epigenomică) oferă 
o viziune cuprinzătoare, multistratificată a modificărilor moleculare în timpul îmbătrânirii, 
identificând biomarkeri și urmărind declinul asociat vârstei(12). Biologia computațională și 
bioinformatica sunt esențiale pentru interpretarea acestor seturi vaste de date, susținând 
analiza căilor metabolice, modelarea rețelelor și dezvoltarea de predictori ai vârstei biologice, 
cum ar fi ceasurile epigenetice(13,14). Inteligența artificială (IA) și învățarea automată (ML) 
îmbunătățesc în continuare analiza prin descoperirea tiparelor subtile, modelarea traiectoriilor 
de îmbătrânire, identificarea profilurilor de risc și prioritizarea țintelor terapeutice, accelerând 
calea către medicina de precizie pentru îmbătrânire(15). Lucrarea noastră valorifică aceste 
tehnologii pentru a investiga îmbătrânirea sistemului imunitar și progresia fibrozei. 
 
Biologia comparată oferă perspective prin studierea speciilor cu durate de viață diverse (de 
exemplu, șobolani-cârtiță golași, balene de Groenlanda), evidențiind mecanisme de longevitate 
conservate sau adaptate în mod unic, cum ar fi proteostaza îmbunătățită, repararea ADN-ului și 
răspunsuri robuste la stres(16,17). Studiile inter-specii ajută la distingerea modificărilor legate 
de vârstă de timpul cronologic, observând modul în care diferite specii gestionează 
îmbătrânirea pe intervale de timp foarte diferite, arătând adesea că mamiferele cu viață lungă 
suprimă inflamația și mențin integritatea genomică mai eficient(18). Analiza transcriptomică 
(RNA-Seq) între specii identifică semnături ale expresiei genice legate de longevitate, cum ar fi 
reglarea în jos a căilor de creștere și reglarea în sus a genelor de întreținere, oferind indicii 
despre căile moleculare conservate relevante pentru sănătatea umană(19). Capitolul II al 
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acestei teze utilizează transcriptomica inter-specii pentru a identifica modificări ale expresiei 
genice, comune și specifice speciei, legate de îmbătrânire, apărarea împotriva stresului și 
reglarea imunitară. 
 
Fibroza (depunerea excesivă de matrice extracelulară) este o caracteristică esențială a 
disfuncției tisulare legate de vârstă în organe precum inima, rinichii, ficatul și plămânii(20). 
Modificările asociate îmbătrânirii (leziuni oxidative, inflamație cronică, activarea fibroblastelor) 
creează un mediu fibrogenic. Fibroza pulmonară idiopatică (FPI) este un exemplu primordial, 
asociat vârstei, afectând predominant persoanele de peste 60 de ani(21). Mecanistic, 
îmbătrânirea promovează fibroza pulmonară prin senescența celulelor epiteliale, fenotipul 
secretor asociat senescenței (SASP) pro-fibrotic, disfuncția mitocondrială și semnalizarea 
inflamatorie persistentă (TGF-β, IL-6)(22,23). Capitolul III prezintă o lucrare colaborativă care 
studiază semnele îmbătrânirii în fibroza pulmonară utilizând un model murin de fibroză 
pulmonară indusă de bleomicină. 
 
Comunicarea intercelulară perturbată este o marcă sistemică a îmbătrânirii, manifestată ca 
inflamație cronică de grad scăzut (inflammaging), supraveghere imună afectată și semnalizare 
endocrină modificată(1). „Inflammaging”(24) este alimentat parțial de celulele senescente care 
eliberează factori SASP (citokine, chemokine) ce perturbă funcția tisulară și imună, creând o 
buclă de feedback dăunătoare(25). Imunosenescența și modificările în semnalizarea endocrină 
contribuie în continuare la disfuncție(26). Comunicarea alterată este un motor cheie al 
îmbătrânirii sistemice. În Capitolul IV, descriu contribuțiile mele: 1) dezvoltarea unui instrument 
de bioinformatică, scDiffCom, pentru inferența modificărilor în comunicarea intercelulară din 
datele scRNA-Seq și 2) utilizarea scDiffCom pentru a construi un atlas al modificărilor legate de 
vârstă în comunicările intercelulare la șoareci (scAgeCom). 
 
Imunosenescența – declinul sistemului imunitar legat de vârstă – are ca rezultat răspunsuri 
diminuate la agenții patogeni, eficacitate redusă a vaccinurilor și boli asociate vârstei 
crescute(27). O componentă de bază este deteriorarea răspunsului umoral adaptativ, marcată 
de modificări în compartimentul celulelor B și de o diversitate redusă a repertoriului de 
anticorpi(28). Secvențierea Repertoriului Receptorilor Imuni Adaptativi (AIRR-Seq) permite o 
analiză profundă a secvențelor receptorilor celulelor B și T(29). Cu toate acestea, studiile de 
îmbătrânire se confruntă cu provocări din cauza seturilor de date transversale și a protocoalelor 
analitice inconsistente(30). Analiza tradițională a repertoriului nu reușește adesea să surprindă 
modelele complexe, neliniare ale sistemului imunitar în curs de îmbătrânire, ceea ce necesită 
otranzitie către învățarea automată (ML). Capitolul V descrie o lucrare colaborativă în 
imunologia computațională axată pe impactul datelor de antrenare a repertoriului imunitar 
asupra modelelor ML, care este crucială pentru dezvoltarea de instrumente pentru o mai bună 
înțelegere viitoare a dinamicii repertoriului imunitar legate de vârstă. 

2. Biologie computațională și inteligență artificială 
Tehnologiile omice de înaltă performanță (high-throughput), cum ar fi genomica, 
transcriptomica, proteomica, metabolomica și epigenomica, au generat seturi extinse de date 
biologice(13). Amploarea și complexitatea acestor date necesită metode computaționale 
sofisticate. Biologia computațională și bioinformatica oferă infrastructura esențială pentru 
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gestionarea datelor, preprocesare și interpretare statistică. Mai recent, învățarea automată 
(Machine Learning - ML) și inteligența artificială (IA) au devenit proeminente, excelând în 
detectarea de tipare complexe, adesea neliniare, în datele omice(31). Influența IA se întinde de 
la domenii precum prezicerea activității de reglare a genelor din secvențele ADN(32) până la 
analiza populațiilor celulare în transcriptomica unicelulară. Această intersecție facilitează 
tranziția de la modele descriptive la modele predictive și mecanice, în special în cercetarea 
îmbătrânirii. 
 
Secvențierea ARN (RNA sequencing - RNA-Seq) este un instrument transformator pentru 
profilarea globală a expresiei genice, oferind sensibilitate superioară și un interval dinamic mai 
larg în comparație cu metodele mai vechi(33). Aceasta permite analize ulterioare, cum ar fi 
expresia diferențială și construcția de rețele, oferind o perspectivă asupra căilor biologice și 
mecanismelor bolilor(34). Apariția secvențierii ARN unicelulare (scRNA-Seq) a revoluționat și 
mai mult domeniul, rezolvând expresia genică la nivelul celulei individuale. Spre deosebire de 
RNA-Seq în masă (bulk), scRNA-Seq dezvăluie diversitatea și eterogenitatea din țesuturile 
complexe, făcând posibilă identificarea tipurilor de celule rare și a traiectoriilor de origine(35). 
Cercetarea mea a valorificat în mod extensiv puterea de înaltă rezoluție a acestor tehnologii, iar 
analizele și descoperirile prezentate în Capitolele II, III și IV s-au bazat pe perspectivele 
profunde oferite de RNA-Seq și scRNA-Seq. 
 
Învățarea automată (ML) este parte integrantă a științelor vieții moderne pentru detectarea și 
predicția de tipare, în special în domenii omice și imagistică biomedicală. ML-ul timpuriu s-a 
concentrat pe acuratețe ridicată, folosind adesea modele de tip „cutie neagră” (black box), cum 
ar fi rețelele neuronale profunde(36). Din cauza preocupărilor din domenii precum medicina, 
accentul s-a mutat către învățarea automată interpretabilă. Tehnici precum SHAP și LIME 
permit cercetătorilor să înțeleagă modul în care modelele iau decizii, legând intrări specifice (de 
exemplu, gene) de rezultate(37). Această interpretabilitate a fost crucială pentru descoperirea 
genelor cauzale și decodarea logicii biologice(38). În cercetarea îmbătrânirii, interpretabilitatea 
este vitală pentru traducerea predicțiilor în semnificație biologică. În propria mea lucrare, 
interpretabilitatea a fost un pilon central al investigațiilor din Capitolele II, IV și V. 
 
Diversitatea sistemului imunitar adaptiv se bazează pe milioane de receptori unici ai celulelor B 
(BCR) și anticorpi. Secvențierea Repertoarului de Receptori Imuni Adaptivi (Adaptive Immune 
Receptor Repertoire Sequencing - AIRR-Seq) permite profilarea în profunzime a acestei 
diversități, revoluționând studiul imunității umorale într-o varietate de condiții(39). AIRR-Seq 
surprinde milioane de secvențe BCR în paralel, permițând reconstrucția clonotipurilor și a 
relațiilor de origine (liniaj) (29). Analiza acestor date vaste și complexe necesită cadre 
computaționale robuste pentru sarcini precum alinierea secvențelor, gruparea (clustering) și 
identificarea mutațiilor (30). Cercetarea mea contribuie la acest domeniu prin avansarea 
tehnicilor de învățare automată pentru AIRR-Seq, concentrându-se pe provocări fundamentale, 
cum ar fi selectarea datelor de antrenare negative pentru a construi modele mai relevante din 
punct de vedere biologic. Acest efort fundamental, descris în Capitolul V, urmărește în cele din 
urmă să reducă lacunele în cartografierea dinamicii repertoriului imun în timpul îmbătrânirii. 
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II. Expresia genică la specii diferite dezvăluie noi gene 
candidate implicate în îmbătrânire și longevitate 
*Kulaga, A. Y., *Ursu, E., *Toren, D., Tyshchenko, V., Guinea, R., Pushkova, M., Fraifeld, V. E. 
& Tacutu, R. Machine Learning Analysis of Longevity-Associated Gene Expression Landscapes 
in Mammals. Int. J. Mol. Sci. 22, (2021). 
* denota first co-authorship 
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Prezentare generală 

În domeniul cercetării îmbătrânirii, o provocare centrală este înțelegerea modului în care 
variațiile în expresia genică influențează longevitatea observată în rândul diferitelor specii. 
Acest studiu a urmărit să clarifice relațiile complexe dintre diferențele transcriptomice și durata 
maximă de viață (DMV) prin abordarea limitărilor modelelor liniare convenționale și a impactului 
factorilor de confuzie, cum ar fi rata metabolică, perioada de gestație și masa corporală. 

1. Introducere 
Investigarea diversității în DVS (Durata de Viață Maximă a Speciei) alături de transcripția genică 
la nivelul speciilor oferă perspective valoroase asupra mecanismelor evolutive ale longevității. 
Cercetările recente au evidențiat diferențe distincte în profilurile de expresie genică între 
mamiferele cu viață lungă și cele cu viață scurtă(40–43). În special, speciile cu viață excepțional 
de lungă prezintă niveluri crescute de gene asociate cu întreținerea și repararea ADN-ului, 
ubiquitinarea, răspunsurile imune, apoptoza și autofagia(44). Supraexpresia genelor de 
reparare a ADN-ului este evidențiată în mod constant în studiile de culturi celulare 
inter-specii(45), iar în câteva organe de mamifere, expresia genelor de răspuns imun se 
corelează pozitiv cu DVS(42). Adaptările pro-longevitate la nivel transcriptomic sunt clar 
documentate la specii precum liliecii(46), șobolanii-cârtiță golași(41,47) și balenele(40,44). 
Aceste dovezi subliniază potențialul studiilor transcriptomice comparative de a descoperi baza 
genetică a longevității. 
 
Studiile transcriptomice comparative tradiționale s-au bazat adesea pe metode liniare, ignorând 
procesele biologice non-liniare. Progresele recente oferă, totuși, alte soluții. 

2. Metode 
Am încadrat problema ca o sarcină de reducere a caracteristicilor, căutând un set minim, extrem 
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de predictiv de gene asociate cu variația Duratei Maxime de Viață (DMV) în diferite organe. 
Protocolul nostru integrează date transcriptomice de la specii multiple pentru a detecta gene 
asociate longevității (GAL) folosind trei metode complementare: modelare liniară pentru tendințe 
specifice organelor, LightGBM combinat cu SHAP pentru evaluarea influenței și interacțiunilor 
genelor și modelare cu rețele Bayes-iene pentru a deduce potențiale legături cauzale cu DMV. 
 
Acest studiu a inclus specii de mamifere cu date RNA-Seq disponibile pentru țesuturi sănătoase 
de ficat, rinichi, plămân, creier sau inimă din Arhiva de Citiri Secvențiale NCBI (NCBI Sequence 
Read Archive), cu adnotări ale transcriptomului preluate din Baza de Date Ensembl Compara 
(48). Un total de 408 de probe de la 38 de specii, acoperind cinci organe, au fost procesate 
folosind un protocol standardizat de cuantificare RNA-Seq. Datele de ortologie și adnotările 
transcriptomului au fost preluate din Ensembl versiunea 99. În total au rezultat 11831 de gene. 
 
Fastp (versiunea 0.20.1)(49) a gestionat controlul calității și trimming-ul. Cuantificarea 
transcriptelor a fost realizată cu Salmon (versiunea 1.4.0)(50), iar tximport (versiunea 3.12) a 
agregat expresia la nivel de genă. Numărul brut de citiri a fost normalizat utilizând metoda 
transcriptelor per milion (TPM) pentru analiza comparativă inter-specii. 
 
Au fost dezvoltate modele liniare specifice organelor pentru a identifica genele asociate cu 
DMV. Activitatea căilor metabolice a fost evaluată folosind analiza de îmbogățire a seturilor de 
gene pentru o singură probă (ssGSEA) cu căile KEGG(51). 
 
Pentru a explora tipare non-liniare, a fost utilizată o selecție inversă în doi pași, combinând 
LightGBM și SHAP. Șase modele de regresie independente au prezis inițial diferite trăsături de 
istorie a vieții (inclusiv DMV) din expresia genică. Genele identificate în orice model au fost 
grupate pentru o a doua fază pentru a rafina setul asociat cu DMV. A fost aplicată o validare 
încrucișată riguroasă pe 5 sub-eșantioane (5-fold cross-validation) cu stratificare sortată, 
repetată de zece ori, cerând valori SHAP non-zero pentru semnificație. O strategie strictă de 
împărțire a datelor a asigurat că predicțiile s-au bazat pe tipare genice, nu pe identificarea 
speciei. Primele 15 gene au fost selectate pe baza cotului graficului de importanță a 
caracteristicilor SHAP (Fig. Suplimentară S4 din Kulaga, Ursu, Toren et al.(52)). 
 
Rețelele Bayes-iene au fost folosite pentru a cartografia independența condiționată și pentru a 
deduce potențiale conexiuni cauzale cu DMV. Algoritmul SES(53) a fost utilizat pentru selecția 
caracteristicilor, identificând genele în învelișul Markov al DMV. SES a fost aplicat setului de 
antrenare cu date imputate, iar semnătura genică rezultată a fost evaluată de un model 
LightGBM antrenat pe datele neimputate, selectând semnătura cu cea mai mică RMSE. 
 
Cele trei abordări de modelare au generat liste clasificate bazate pe metrici distincte: (1) 
LightGBM-SHAP: frecvența SHAP mediu absolut non-zero, Kendall’s tau și SHAP mediu 
absolut; (2) Regresia Liniară: R2 maxim; și (3) Rețele Bayes-iene: frecvența relativă în 
semnături. O clasificare compozită finală a fost derivată prin însumarea rangurilor a șase metrici 
cheie: frecvența de selecție, corelația Kendall’s tau, valoarea SHAP medie absolută, cel mai 
mare R2 liniar, frecvența relativă în rețelele Bayes-iene și indicatorul mențiunii în GenAge(54). 
Un model liniar multinivel Bayesian cu coeficienți aleatori specifici organelor a fost construit 
pentru a analiza setul final de gene selectate. 
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Pe baza clasificării compozite și a unui grafic elbow (Fig. Suplimentară S4 din Kulaga, Ursu, 
Toren et al.(52)), au fost identificate primele 15 gene. O serie de modele LightGBM-SHAP, 
încorporând subseturi de la primele 5 până la primele 15 gene, au fost dezvoltate. Evaluarea 
preciziei modelului a indicat faptul că modelul cu primele 6 gene a oferit cel mai bun compromis 
între simplitate și performanță, arătând o reducere notabilă a pierderii Huber (0.8) în comparație 
cu modelul cu primele 5 gene. 

3. Rezultate și Discuții 
Un set de date de expresie genică inter-specii, compilat din date RNA-Seq disponibile public, 
oferă un cadru comparativ extins. Acest set de date conține date de expresie genică pentru 
cinci organe majore (ficat, rinichi, plămân, creier și inimă) din 408 de probe, provenind de la 41 
de specii de mamifere. Variabilele specifice fiecărei specii, incluzând DMV, masa corporală, 
temperatura, rata metabolică, perioada de gestație și conținutul GC al ADN-ului mitocondrial, au 
fost încorporate după normalizare, deoarece reprezintă factori cheie ai longevității(55–57). 
Pentru a explora legătura dintre expresia genică și DMV, am utilizat regresia liniară, modelarea 
interpretabilă LightGBM-SHAP și analiza rețelelor bayesiene. Integrarea rezultatelor din aceste 
modele a identificat gene care se clasează în mod constant ca fiind principalii predictori ai DMV 
(vezi Fig. 1). 
 
Modelele liniare au fost utilizate pentru a evalua relația dintre expresia a 11831 de ortologi 
conservate evolutiv și Longevitatea Maximă a Speciei (LMS) la 33 de specii de mamifere (Fig. 
2a). Numărul de gene asociate semnificativ cu LMS (FDR < 0,05, R2 > 0,3) a variat în funcție 
de organ, atingând un vârf în plămân (756) și cel mai scăzut nivel în rinichi (154). Valorile 
mediane R2 au fost consistente (0,35–0,38). 
 

 
Figura 1. Reprezentarea schematică a fluxului de lucru pentru analiza între specii. 
Figură adaptată din Figura 1 din Kulaga, Ursu, Toren. et al. (2021), utilizată sub licența CC BY 4.0. 
 
Doar trei gene (CRYGS, TCFL5 și SPATA20) au fost corelate pozitiv cu DVM în toate cele cinci 
organe. Concentrându-ne pe creier, ficat și rinichi, numărul de gene asociate cu DVM a crescut 
la 12, incluzând SPATA20, TCFL5 și CRYGS (Tabel Supl. S2 din Kulaga, Ursu, Toren et al.(52)). 
 
Multe gene asociate cu DVM au fost corelate și cu alte trăsături de istorie a vieții (de exemplu, 
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masa corporală, rata metabolică), sugerând asocieri indirecte. Doar câteva gene au fost 
corelate în mod unic cu DVM: una în ficat (CERS4), patru în inimă și 131 în plămâni; niciuna în 
creier sau rinichi. Totuși, rezultatele pentru inimă și plămâni ar trebui interpretate cu prudență 
din cauza dimensiunilor mai mici ale eșantioanelor. 
 
Am utilizat abordarea proiecției semnăturii (ssGSEA) pentru a analiza relația dintre activitatea 
căilor biologice, estimată din expresia genică în organe, și durata de viață maximă (DVM) (Fig. 
2b). Analiza noastră s-a concentrat pe căi de îmbătrânire/longevitate deja stabilite, incluzând 
semnalizarea mTOR și a insulinei, repararea ADN-ului, proteoliza mediată de ubiquitină și 
adeziunea focală(58–60). 
 
Deși semnalizarea mTOR nu a fost corelată semnificativ cu DVM, multiple căi legate de 
repararea ADN-ului (repararea erorilor de împerechere – mismatch, excizia nucleotidică, excizia 
bazelor, recombinarea omoloagă și joncțiunea capetelor non-omoloage) au prezentat corelații 
pozitive robuste. Câteva alte căi au fost corelate pozitiv și negativ cu DVM. În mod neașteptat, 
căi care nu sunt legate în mod tradițional de longevitate, cum ar fi apoptoza, moleculele de 
adeziune celulară și semnalizarea ErbB, au fost corelate pozitiv cu DVM. Am validat căi de 
longevitate cunoscute (apoptoza, repararea ADN-ului, răspunsurile imune) și am evidențiat 
unele mai puțin explorate – incluzând semnalizarea PPAR, metabolismul glutationului și 
semnalizarea ErbB – ca fiind domenii promițătoare. 

 
Figura 2. Corelații liniare între expresia genică și căile biologice cu DMV. 
(a) Corelații liniare de vârf între expresia genică și trăsăturile speciei. Această hartă termică evidențiază 
relațiile semnificative statistic (FDR < 0.05, R² > 0.3) între nivelurile de expresie genică și trăsăturile 
cheie ale speciei. (b) Corelații liniare de vârf între MLS și scorurile de îmbogățire a căii (ES). A doua 
hartă termică vizualizează asocierile cheie între MLS și scorurile de îmbogățire a căii (ES). 
Figură adaptată din Figura 2 Kulaga, Ursu, Toren. et al. (2021), utilizată sub licența CC BY 4.0. 
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Pentru a identifica relațiile neliniare dintre expresia genică și Durata Maximă de Viață (DMV), 
am utilizat un cadru de învățare automată interpretativ, folosind LightGBM și SHapley Additive 
exPlanations (SHAP)(61,37). Un model de referință care utilizează trăsăturile de istorie a vieții 
speciei (masa corporală, rata metabolică, temperatură, perioada de gestație și conținutul GC 
mitocondrial) a atins o precizie ridicată (R2 = 0,96). Conținutul GC al ADN-ului mitocondrial și 
perioada de gestație au fost cei mai influenți predictori, în concordanță cu descoperirile 
anterioare(62),(56). În continuare, o selecție descendentă de trăsături în două etape, cu 
LightGBM-SHAP, a evaluat influența fiecărui genă asupra DMV. Această abordare a rafinat un 
set inițial la 57 de gene, îmbunătățind substanțial performanța predictivă (Etapa II: R2 a crescut 
de la 0,90 la 0,95; MAE a scăzut de la 4,73 la 3,04). Dintre cele 57 de gene, a fost remarcată o 
suprapunere nesemnificativă, dar consistentă (17 gene) cu genele asociate longevității (GALs) 
documentate în baza de date GenAge(54), inclusiv GNAS și TERT. Prioritizând genele după 
valorile absolute medii SHAP, am identificat 57 de gene cu contribuții predictive semnificative (\> 
0,1 ani). Graficul de sinteză SHAP (Fig. 3) ilustrează influența lor relativă. 
 

 
Figura 3. Explicații SHAP ale Expresiei Genice și Predicțiilor MLS 
(a) Diagrama Sumarizatoare SHAP (SHAP Summary Plot). (b) Diagrama Decizională SHAP pentru 
Predicții Individuale (SHAP Decision Plot). (c) Harta Termică de Interacțiune SHAP pentru Perechi de 
Gene (SHAP Interaction Heatmap). (d) Harta Termică bazată pe SHAP a Contribuțiilor Genice per 
Eșantion (SHAP-based Heatmap of Gene Contributions per Sample).  
Figura adaptată din Figura 3 Kulaga, Ursu, Toren. et al. (2021), utilizată sub licența CC BY 4.0. 
 
Cinci dintre primele 15 gene (DYRK4, NFKBIL1, TRAPPC2L, ETV2 și CHCHD3) au influențat 
substanțial predicțiile duratei maxime de viață la mamifere (MLS), fiecare modificând predicțiile 
cu peste un an. Asocierea genelor TRAPPC2L și ETV2 cu îmbătrânirea este nedocumentată, 
sugerând că acestea sunt noi candidați promițători pentru cercetarea longevității. Cuantificarea 
direcției și forței asocierii utilizând coeficientul tau-b al lui Kendall între expresia genică și 
contribuțiile SHAP a identificat gene puternic pro-longevitate (tau ≥ 0.6) precum NEIL1, 
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CALCOCO2 și LRR1, și gene puternic anti-longevitate (tau ≤ −0.6), incluzând C6orf89 și 
PPP1CA. CALCOCO2 (tau = 0.72) a apărut în mod constant ca un predictor pozitiv puternic al 
MLS în multiple organe (de exemplu, plămân R² = 0.56, creier R² = 0.54, ficat R² = 0.53, inimă 
R² = 0.39). În schimb, cea mai puternică genă anti-longevitate, C6orf89 (tau = −0.79), a fost un 
predictor negativ în inimă (R² = 0.61) și ficat (R² = 0.40). 
 
Genele care influențează durata de viață la mamifere (MLS) interacționează adesea complex, 
ducând la efecte combinate diferite de impacturile individuale. Am analizat aceste interacțiuni 
folosind valorile de interacțiune SHAP, care cuantifică relațiile de cooperare sau antagoniste. 
Fig. 3c rezumă forțele de interacțiune între genele de top asociate cu MLS. 
 
Apoi am aplicat modelarea cu rețele bayesiene pentru a explora potențialele asocieri cauzale 
între expresia genică și MLS, identificând relații robuste, independente de redundanță sau 
corelații indirecte(63). Folosind conceptul de pătura Markov (Markov blanket) și algoritmul 
SES(53), am efectuat 50 de iterații pentru a genera semnături genice potențial cauzale (Fig. 
Supl. S3 din Kulaga, Ursu, Toren et al.(52)). Genele cu frecvență ridicată, indicând robustețe, au 
inclus NOXA1 (1.00), C6orf89 (0.94), NEU2 (0.94), NDUFA6 (0.90), RBM46 (0.82), KCNMB3 
(0.72) și CEL (0.60). Din punct de vedere biologic, aceste rezultate coroborează descoperirile 
LightGBM-SHAP (de exemplu, NOXA1, C6orf89, CEL). Analiza de îmbogățire funcțională a 
implicat puternic mecanismele mitocondriale ca fiind centrale pentru longevitate. 
 
Am găsit o consistență substanțială între modelele liniare și cele LightGBM-SHAP. Integrarea 
rețelelor bayesiene a întărit rolul genelor NOXA1, C6orf89 și CEL, indicând mitocondriile, 
repararea ADN-ului și reglarea metabolică ca procese cheie ale longevității. Integrând 
rezultatele bayesiene și LightGBM-SHAP, am constatat că genele robuste bayesiene (NOXA1, 
C6orf89, NEU2, NDUFA6, RBM46, KCNMB3, CEL) nu au avut toate cele mai mari valori SHAP. 
Totuși, CEL și KCNMB3 s-au clasat printre primele 10 gene cu cel mai mare impact conform 
SHAP. Două gene, NOXA1 și KCNMB3, au fost asociate robust cu MLS prin toate cele trei 
metode. Aceste gene fiabile, validate încrucișat, sunt candidați puternici pentru investigații 
funcționale viitoare asupra longevității. 
 
Clasamentul Compozit și Determinarea Semnăturii Genice de Bază. Am stabilit un 
clasament compozit prin agregarea metricilor de performanță din toate cele trei modele. Acest 
clasament a fost utilizat cu modele liniare bayesiene multinivel pentru a identifica o semnătură 
genică de bază optimă și concisă. Evaluând subgrupuri (de la primele 3 la primele 13 gene) pe 
baza devianței penalizate, primele 11 gene clasate au fost selectate ca semnătură de bază, 
echilibrând simplitatea modelului și precizia predicției. Acest set final (detaliat în Tabelul 1 din 
teza integrală și în publicație) oferă candidați genici robuști pentru cercetarea longevității la 
mamifere. 

4. Concluzii 
Acest studiu a analizat expresia genică la 41 de specii de mamifere și cinci organe, utilizând 
modele liniare, neliniare și rețele bayesiene, pentru a identifica determinanții genetici ai 
Longevității Maxime (MLS). Peste 1800 de gene au arătat corelații semnificative cu MLS, 
adesea specifice organului. Analiza căilor de semnalizare a confirmat căile de longevitate deja 
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stabilite (de exemplu, repararea ADN-ului) și a sugerat altele noi (de exemplu, semnalizarea 
PPAR). Învățarea automată interpretabilă (LightGBM-SHAP) și rețelele bayesiene au identificat 
gene candidate suplimentare, cu o suprapunere limitată cu genele asociate experimental cu 
longevitatea (LAGs), reflectând diferențele dintre variația naturală și intervenția genetică. În 
special, CEL, NOXA1, CALCOCO2 și KCNMB3 au fost identificate în mod constant ca fiind 
candidați robuști pentru longevitate. Cercetarea evidențiază valoarea integrării modelării 
complementare pentru a diseca durata de viață a mamiferelor, oferind candidați promițători și 
un cadru metodologic solid. 

III. Semnătura îmbătrânirii în fibroza pulmonară 
Toren, D., Yanai, H., Abu Taha, R., Bunu, G., Ursu, E., Ziesche, R., Tacutu, R. & Fraifeld, V. E. 
Systems biology analysis of lung fibrosis-related genes in the bleomycin mouse model. Sci. 
Rep. 11, 19269 (2021). 
 
Declarație de Contribuții 
 
În calitate de autor secundar, contribuția mea principală a fost o analiză de modelare liniară 
inter-specii, corelând expresia genelor pro- și anti-fibrotice cu durata maximă de viață (MLS) în 
organele mamiferelor. De asemenea, am interpretat rezultatele și am asistat la pregătirea 
manuscrisului. Proiectul a fost conceput și coordonat de echipele Prof. Vadim E. Fraifeld și Dr. 
Robi Tăcutu. 
 
Rezultate și Discuții 
 
Acest studiu a identificat 216 Gene Unice Asociate cu Fibroza Pulmonară (GUAFP) utilizând un 
model murin de fibroză pulmonară indusă de bleomicină. Intervențiile genetice au fost metoda 
principală. Aproximativ 43,5% din aceste gene au arătat activitate anti-fibrotică, 50% au fost 
pro-fibrotice, iar 6,5% au avut rezultate inconsistente. 
 
Asocieri între GUAFP și Longevitate. Corelarea GUAFP cu Genele Asociate cu Longevitatea 
(GAL) din baza de date GenAge (58,64) a dezvăluit o legătură direcțională puternică: 11 din 12 
gene pro-longevitate au fost anti-fibrotice, și 5 din 6 gene anti-longevitate au fost pro-fibrotice 
(testul exact al lui Fisher, p = 0,001). 
 
Analiza ulterioară a datelor de expresie pulmonară inter-specii a arătat că 34 de GUAFP s-au 
corelat semnificativ cu Durata Maximă de Viață (MLS) a mamiferelor, o frecvență de 2,34 ori 
mai mare decât cea așteptată (testul exact al lui Fisher, p = 6,4E−05). Acest lucru susține 
ipoteza că genele legate de fibroză joacă un rol conservat în reglarea longevității, subliniind 
fibroza ca un factor critic al patologiei legate de vârstă.Concluzii 
 
Genele pro-longevitate (GAL) sunt, în general, anti-fibrotice, iar genele anti-longevitate sunt în 
mare parte pro-fibrotice, dezvăluind o legătură genetică puternică, comună, între fibroza 
pulmonară și îmbătrânire. Analiza funcțională întărește acest lucru, cu grupuri anti-fibrotice 
bogate în GAL și grupuri pro-fibrotice predominant anti-GAL. 
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Acest lucru se aliniază cu faptul că îmbătrânirea este legată de căile care guvernează repararea 
țesuturilor, inflamația și metabolismul, care sunt critice pentru ambele condiții. Dovezile actuale 
sugerează că fibroza și îmbătrânirea apar din mecanisme genetice/moleculare comune, deși 
cauzalitatea necesită mai multe studii. 

IV. Comunicarea intercelulară este perturbată odată cu 
îmbătrânirea 
*Lagger, C., *Ursu, E., Equey, A., Avelar, R. A., Pisco, A. O., Tacutu, R. & de Magalhães, J. P. 
scDiffCom: a tool for differential analysis of cell-cell interactions provides a mouse atlas of aging 
changes in intercellular communication. Nat. Aging 3, 1446–1461 (2023). 
* denota first co-authorship 
 
Declarația de Contribuții 
În calitate de co-prim autor al acestui studiu, am contribuit în mod egal la proiectarea, 
implementarea și interpretarea proiectului alături de Dr. Cyril Lagger. În mod specific, am 
co-dezvoltat instrumentele scDiffCom, scAgeCom și scAgeComShiny; am curatoriat și analizat 
baza de date privind interacțiunile ligand-receptor; și am efectuat analize pentru a susține 
constatările cheie. Am fost, de asemenea, implicat activ în interpretarea rezultatelor și în 
co-redactarea manuscrisului. Cadrul metodologic de bază și fluxul de lucru analitic au fost 
dezvoltate în colaborare între mine și C.L. și reprezintă obiectivul principal al acestui capitol. 
Studiul a fost supervizat în comun de Dr. Robi Tăcutu și Prof. João Pedro de Magalhães. 

Prezentare generală 

Dereglementarea comunicării intercelulare (CIC) este un semn distinctiv fundamental al 
îmbătrânirii, contribuind la diverse procese fiziologice și patologice. Pentru a investiga 
sistematic aceste modificări, introducem scDiffCom și scAgeCom, două instrumente 
complementare pentru analiza alterărilor comunicării celulă-celulă legate de vârstă. 

scDiffCom este un pachet R pentru analiza diferențială a CIC utilizând date de transcriptomică 
unicelulară, bazându-se pe o bază de date curatoriată de aproximativ 5.000 de interacțiuni 
ligand-receptor (ILR) pentru a compara rețelele de comunicare între diferite condiții. 

Construit pe baza scDiffCom, scAgeCom este un atlas cuprinzător al modificărilor CIC legate de 
vârstă, integrând date din 23 de țesuturi de șoarece și 58 de seturi de date scRNA-seq din 
Tabula Muris Senis și Calico Murine Aging Cell Atlas. Această resursă dezvăluie schimbări 
sistemice legate de vârstă în semnalizarea intercelulară, incluzând: 

●​ Activitate imună și inflamație crescută 
●​ Semnalizare de dezvoltare redusă 
●​ Angiogeneză și remodelare a matricei extracelulare afectate 
●​ Metabolism lipidic dereglat 

scAgeCom identifică liganzi, receptori și tipuri de celule specifice care conduc aceste procese și 
este disponibil public la https://scagecom.org. 
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1. Introducere 
Îmbătrânirea este un proces biologic complex, marcat de o dereglare semnificativă a ICC, 
recunoscută ca o caracteristică definitorie a îmbătrânirii(1,65). Cercetările existente evidențiază 
mai multe modificări ale ICC odată cu îmbătrânirea, cum ar fi inflammaging (inflamația asociată 
vârstei)(66), supravegherea imună afectată(67) și secreția crescută de SASP(68). Deși ICC 
este dificil de măsurat direct, progresele în analiza expresiei genice la nivel de celulă unică 
permit inferența acesteia(69,70). Studiile existente privind îmbătrânirea la nivel de celulă unică 
se concentrează adesea pe detectarea rețelelor ICC separat în probele tinere și cele în vârstă, 
ceea ce ignoră schimbările în intensitatea interacțiunii și nu dispune de un cadru statistic pentru 
cuantificarea modificărilor. Pentru a aborda aceste limitări, am dezvoltat scDiffCom, un pachet R 
pentru analiza diferențială a ICC. Am aplicat scDiffCom la seturi de date scRNA-seq privind 
îmbătrânirea din Tabula Muris Senis(71) și Atlasul Celular Murin al Îmbătrânirii Calico(72) pentru 
a crea scAgeCom, un atlas la scară largă care cartografiază schimbările ICC asociate vârstei în 
23 de țesuturi de șoarece. Această analiză confirmă dereglarea sistemică, cu o reglare pozitivă 
globală a activității sistemului imunitar și a inflamației și un declin al proceselor precum 
organizarea matricei extracelulare și creșterea tisulară. 

2. Metode 
Recuperarea și Procesarea Interacțiunilor Ligand–Receptor (ILR) și adnotarea cu termeni 
GO, căi KEGG și resurse despre îmbătrânire. Am compilat seturi de date de înaltă calitate, 
curate, privind interacțiunile ligand–receptor (ILR) din șapte baze de date publice (de ex., 
CellChat, NicheNet, CellPhoneDB), excluzând interacțiunile prezise computațional. ILR-urile au 
fost adnotate cu termeni Gene Ontology (GO) utilizând o metodă personalizată bazată pe 
intersecția bazată pe grafic a termenilor ligandului și receptorului din Ensembl. Căile KEGG au 
fost atribuite numai dacă atât ligandul, cât și receptorul se aflau în aceeași cale. Pentru a lega 
ILR-urile de îmbătrânire, am integrat date din baze de date legate de îmbătrânire (GenAge, 
LongevityMap, CellAge, HAGR) și am cuantificat articolele PubMed care fac referire la fiecare 
genă ILR (sau omologul său uman) în contextul îmbătrânirii. 
 
Scorarea IIC (Media Geometrică), Detecția, Analiza Diferențială și Clasificarea. scDiffCom 
calculează un scor de interacțiune inter-celulară (IIC) ca media geometrică a expresiei 
ligandului și receptorului pentru a reflecta natura multiplicativă a interacțiunilor, făcând ca 
logaritmul schimbării de pliu (logFC) al acestuia să fie media aritmetică a logFC-urilor genelor. 
Metoda utilizează trei teste de permutare simultane pentru a evalua specificitatea IIC în două 
condiții (A, B) și expresia diferențială între ele, testând doar IIC-urile exprimate. Distribuțiile nule 
sunt generate prin amestecarea etichetelor, iar p-valorile specificității unilaterale și p-valorile 
expresiei diferențiale bilaterale sunt calculate și ajustate Benjamini-Hochberg. Un IIC este 
„detectat” dacă este exprimat, specific (p-adj. < 0,05) și clasat în top (80%). Este „exprimat 
diferențial” dacă p-valoarea sa diferențială ajustată cu FDR este < 0,05. IIC-urile detectate sunt 
clasificate (UP, DOWN, FLAT, NSC) pe baza DE ajustate și a logFC, prioritizând testul 
diferențial. Compararea cu analiza standard a expresiei diferențiale a genelor evidențiază 
necesitatea integrării rezultatelor la nivel de IIC și la nivel de genă pentru o captură și clasificare 
fiabilă a interacțiunilor. Analiza de Supra-Reprezentare (ORA) este utilizată pentru a detecta 
trăsături supra-reprezentate (de ex., termeni GO, căi) în Interacțiunile Inter-Celulare (IIC) reglate 
diferențial. 
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Dezvoltarea scAgeComShiny. Aplicația web interactivă Shiny, scAgeComShiny, a fost 
construită cu golem (73). Utilizează plotly (74) pentru diagrame de dispersie și rrvgo 
(75)/REVIGO(76) pentru vizualizarea termenilor GO și reducerea redundanței. Aplicația este 
containerizată cu Docker și implementată prin ShinyProxy. 
 
Statistici și Reproductibilitate. Dimensiunea eșantionului a fost limitată de disponibilitatea 
publică. Nu a fost posibilă randomizarea sau orbirea. Au fost utilizate teste non-parametrice (DE 
și ORA), cu corecția Benjamini–Hochberg aplicată în mod constant pentru testarea multiplă. 

3. Rezultate și Discuții 
Interacțiuni Ligand-Receptor (LRI) din baze de date existent 
Pentru a analiza comunicarea intercelulară (ICC) din datele scRNA-seq, abordarea noastră a 
necesitat mai întâi o bază de date extinsă de interacțiuni Ligand-Receptor (LRI). Pentru a 
maximiza acoperirea diferitelor tipuri de interacțiuni, am compilat LRI din șapte resurse 
disponibile public, incluzând CellChat (79), CellPhoneDB (80), CellTalkDB (81), 
NATMI/connectomeDB2020 (82), ICELLNET (83), NicheNet (84), și SingleCellSignalR (85). 
Abordarea noastră a dus la generarea a două baze de date curate de interacțiuni 
ligand–receptor (LRI). Baza de date LRI pentru șoarece conține 4.582 de interacțiuni, dintre 
care 3.479 sunt simple și 1.103 sunt complexe. În mod similar, baza de date LRI pentru om 
include 4.785 de interacțiuni, cu 3.648 de interacțiuni simple și 1.137 de interacțiuni complexe. 
Date detaliate pot fi găsite în Fig. 6a și Tabele Suplimentare 1 și 2 din Lagger, Ursu et al. (86). 
 
Adnotarea funcțională a LRI-urilor. Am implementat un cadru standardizat pentru a adnota 
toate interacțiunile ligand–receptor (LRI), asigurând relevanța biologică și facilitând analizele 
ulterioare. Pentru a îmbogăți LRI-urile cu adnotări relevante din punct de vedere biologic, am 
atribuit termeni Gene Ontology (GO) (87) interacțiunilor într-un mod semnificativ, prioritizând 
termenii relevanți pentru interacțiunea în sine, mai degrabă decât pentru genele individuale. 
LRI-urile au fost legate de căile KEGG (88) numai dacă toate genele dintr-o anumită 
interacțiune erau prezente în aceeași cale. În anticiparea analizelor legate de îmbătrânire, am 
mapat genele LRI de șoarece la articole PubMed care le leagă de îmbătrânire și boli legate de 
vârstă (excluzând cancerele). În plus, am făcut o referire încrucișată a genelor cu bazele de 
date cheie legate de îmbătrânire, inclusiv GenAge (54), CellAge (89,90), LongevityMap (91), 
baza de date Gene Expression (92) a Resurselor Genomice de Îmbătrânire Umană (HAGR) 
(54). 
 
Analiza comunicării diferențiale celulă-celulă cu scDiffCom 
 
Pachetul R scDiffCom detectează schimbări semnificative în comunicarea celulă-tip (CCI) între 
două condiții în seturile de date scRNA-seq (Fig. 4), lucrând cu obiecte R Seurat care conțin 
etichete de tip celular și condiție(93–95). Acesta atribuie un scor CCI bazat pe expresia medie a 
ligandului și receptorului, robust la părtinirea numărului total de celule(96). CCI-urile sunt 
validate pe baza a trei criterii: expresie suficientă, specificitate printr-un test de permutare de tip 
CellPhoneDB(80,97) și un scor relativ ridicat. CCI-urile sunt apoi clasificate ca reglate în sus 
(UP), reglate în jos (DOWN), stabile (FLAT) sau fără schimbare semnificativă (NSC). scDiffCom 
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utilizează Analiza Supra-Reprezentării (ORA) pentru a analiza mii de Interacțiuni Celulă-Celulă 
(CCI) clasificate — Reglate în sus (UP), Reglate în jos (DOWN) sau Stabile (FLAT) — pe un 
fundal al celorlalte. Această abordare evită părtinirea tradițională a îmbogățirii bazate pe gene. 
 
Îmbătrânirea dereglează mai multe aspecte ale comunicării celulă-celulă 
Atlasul scAgeCom, construit cu scDiffCom pe 58 de seturi de date scRNA-seq murine din 
TMS(71) și Calico(72), detaliază modificările comunicării intercelulare (ICC) legate de vârstă în 
23 de organe, abordând dimorfismul sexual (Fig. 5 și Text Suplimentar 1, Fig. Suplimentară 1 
din Lagger, Ursu et al.(86)). Această resursă este disponibilă online (https://scagecom.org/) 
(Fig. 6). Dintre cele 393.035 de interacțiuni celulă-celulă (CCI) detectate, 18% au fost reglate 
diferențial în funcție de vârstă (5% reglate în sus, 13% reglate în jos). 1.135 de interacțiuni 
ligand-receptor au fost filtrate pentru a minimiza descoperirile false. Benchmarking-ul a 
confirmat că scorul CCI al scDiffCom este superior comparațiilor la nivel de genă (Ext. Data Fig. 
2 din Lagger, Ursu et al.(86)), metoda sa ORA evită părtinirea termenilor GO (Fig. Suplimentare 
2 și 3 din Lagger, Ursu et al.(86)) și bazele de date LRI sunt cruciale (Fig. Suplimentară 4 din 
Lagger, Ursu et al.(86)). Aceste rezultate stabilesc scDiffCom ca un instrument robust pentru 
detectarea CCI-urilor mediate de proteine, relevante din punct de vedere biologic, din datele 
scRNA-seq, făcând din atlasul scAgeCom o resursă valoroasă pentru cercetarea îmbătrânirii. 
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Figura 4. Rezumatul Fluxului de Lucru al scDiffCom. 
Citirile de secvențiere ARN monocelulară (scRNA-seq) sau identificatorii moleculari unici (UMIs) sunt mai întâi 
agregați pe tipuri de celule și condiții experimentale (1). Datele de expresie genică sunt apoi mapate pe baza de 
date curatoriată de interacțiuni ligand-receptor (LRIs) (2) pentru a deduce toate interacțiunile celulă-celulă (CCIs) 
posibile între tipurile de celule (3). Sunt efectuate teste statistice de permutare pentru a evalua relevanța biologică 
a fiecărui CCI și pentru a detecta expresia diferențială între condiții (4). CCIs sunt clasificate ulterior pe baza 
metricilor calculate, incluzând scorurile de interacțiune, valorile P și log-schimbarea de pliu (5). Rezultatele sunt 
compilate într-un format structurat adecvat pentru analiza și interpretarea ulterioară (6). FC, schimbare de pliu (fold 
change); tSNE, încorporare stocastică de vecinătate distribuită t (t-distributed stochastic neighbor embedding). 
Figura adaptată din Figura 2 din Lagger, Ursu. et al. (2023), utilizată sub licența CC BY 4.0 
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Figura 5. Cele 58 de Seturi de Date de Îmbătrânire scRNA-seq din scAgeCom. 
Figură adaptată din Figura 3 din Lagger, Ursu. et al. (2023), utilizată sub licență CC BY 4.0 
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Figura 6. Prezentare generală a rezultatelor vizuale în scAgeCom. 
scAgeCom oferă o varietate de rezultate grafice, accesibile la https://scagecom.org/, pentru a facilita explorarea 
schimbărilor legate de îmbătrânire în comunicarea intercelulară. 
Figură adaptată după Figura 4 din Lagger, Ursu. et al. (2023), utilizată sub licența CC BY 4.0 
 

 
Figura 7. Variația tiparelor de reglare în funcție de vârstă ale CCI-urilor în seturile de date scAgeCom. 
Proporțiile de CCI-uri clasificate ca fiind suprareglate (UP), subreglate (DOWN), stabile (FLAT) sau fără modificări 
semnificative (NSC) în funcție de vârstă diferă între seturile de date, în funcție de tipul de țesut, sex și metodologia 
experimentală. În general, seturile de date TMS FACS prezintă un zgomot mai mare, reflectat de o proporție mai 
mare de CCI-uri clasificate ca NSC, comparativ cu seturile de date bazate pe Droplet. În plus, seturile de date TMS 
FACS (masculin) afișează o fracțiune notabil mai mare de CCI-uri subreglate în funcție de vârstă, în raport cu 
celelalte condiții. 
Figură adaptată din Figura 6 din Lagger, Ursu. et al. (2023), utilizată sub licența CC BY 4.0 
 
Reglarea interacțiunilor celulă-celulă (ICC) odată cu vârsta este foarte variabilă, seturile de date 
TMS FACS (masculi) arătând multe ICC-uri reglate negativ. Seturile de date FACS sunt mai 
zgomotoase decât seturile de date Droplet. Am prioritizat schimbările care apar în mai multe 
țesuturi, implicând gene noi de îmbătrânire, în secretomică sau dependente de sex. 
 
A fost confirmată o reglare sistemică în sens ascendent a proceselor inflamatorii, imune și 
virale, incluzând interacțiunile B2m:Cd3g, Tnfsf12:Tnfrsf12a și Ccl5 (Ext. Data Fig. 3b din 
Lagger, Ursu et al.(86)). B2M este prezent în cinci secretome. Slpi:Plscr1, deși reglat ascendent 
în opt țesuturi, este în mare măsură neexplorat în contextul îmbătrânirii. 
 
Metabolismul lipidelor este dereglat (Ext. Data Fig. 4 din Lagger, Ursu et al.(86)) cu tipare 
specifice sexului: ICC-urile legate de Apoe sunt reglate ascendent la masculi, dar reglate 
descendent la femele, și invers pentru ICC-urile legate de App. Aceste proteine asociate bolii 
Alzheimer (AD) au probabil roluri sistemice în îmbătrânire, susținute de detecția în secretomă. 
 
O observație frapantă este reglarea descendentă a organizării matricei extracelulare (MEC) și a 
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aderenței celulare (Ext. Data Fig. 5 din Lagger, Ursu et al.(86)). Acest declin, determinat de 
colagene, cadherine și metalopeptidaze cu integrine, este cel mai puternic în țesutul conjunctiv, 
celulele epiteliale și endoteliale. 
 
Creșterea, dezvoltarea, supraviețuirea, diferențierea și angiogeneza, de asemenea, scad (Ext. 
Data Fig. 6 din Lagger, Ursu et al.(86)), sugerând o regenerare afectată. Comunicarea redusă 
între celulele stem și către celulele endoteliale leagă îmbătrânirea de capacitatea regenerativă 
diminuată (Ext. Data Fig. 5c din Lagger, Ursu et al.(86)). 
 
scAgeCom dezvăluie tipare dimorfice sexuale (Fig. 7); de exemplu, în setul de date TMS FACS 
Plămân, 13% din ICC-uri (incluzând App, Pecam1 și Itgb1) au arătat o expresie mai puternică la 
masculii tineri, care a scăzut odată cu vârsta la masculi, dar a crescut la femele, evidențiind 
necesitatea abordărilor personalizate. 

4. Concluzii 

În ciuda limitărilor semnificative, scAgeCom oferă un atlas extins al îmbătrânirii comunicarii 
intercelulare la șoareci, oferind perspective noi asupra modificărilor de comunicare specifice 
țesutului și specifice sexului. Contribuțiile cheie includ: 

●​ Cartografierea comunicarii intercelulare cuprinzătoare în 23 de țesuturi 
●​ Identificarea potențialelor ținte terapeutice (de ex., B2m, Mif, Angpt1, Apoe) 
●​ Noi ipoteze privind mecanismele de îmbătrânire, inclusiv modificările metabolismului 

lipidic și mecanismele declinului vascular 
●​ Potențial de integrare cu seturi de date de senescență și proteomică pentru validare 

ulterioară 

În viitor, analiza încrucișată cu alte atlase de îmbătrânire, cum ar fi atlasul SASP, va fi esențială 
pentru a ne rafina înțelegerea modului în care comunicarea intercelulara influențează procesul 
de îmbătrânire. 

V. Compoziția datelor de antrenament negative este 
critică pentru învățarea repertoriilor imune 
*Ursu, E., *Minnegalieva, A., Rawat, P., Chernigovskaya, M., Tacutu, R., Sandve, G. K., Robert, 
P. A. & Greiff, V. Training data composition determines machine learning generalization and 
biological rule discovery. Nature Machine Intelligence (2025). doi:10.1101/2024.06.17.599333 
* denota first co-authorship 
 
Declarație privind Contribuțiile 
În calitate de co-prim autor al acestui studiu, am contribuit în mod egal cu Aygul Minnegalieva la 
proiectarea, execuția și redactarea lucrării. Împreună cu Aygul Minnegalieva și Prof. Victor 
Greiff, am conceput analizele și vizualizările centrale studiului. De asemenea, am efectuat 
analize cheie și generarea de figuri în colaborare cu Aygul Minnegalieva și Dr. Philippe A. 
Robert. În plus, am co-redactat prima versiune a manuscrisului alături de Aygul Minnegalieva și 
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Prof. Victor Greiff și am participat la revizuirea versiunii finale. Natura colaborativă a acestui 
studiu este reflectată în contribuțiile noastre egale. Acest capitol se axează pe munca pe care 
am dezvoltat-o în comun și pe interpretarea rezultatelor în contextul mai larg al modelării 
imunologice sub îndrumarea Prof. Victor Greiff. 

1. Introducere 
Modelele de învățare automată (ML) supravegheată depind în mod critic de compoziția seturilor 
de date etichetate, în special de definirea eșantioanelor negative (care reprezintă absența 
clasei țintă) în clasificarea binară(98–101,102,103). Acest factor este insuficient studiat în ceea 
ce privește influența sa asupra generalizării modelului și extracției regulilor biologice. Contextul 
predicției legării anticorp-antigen, cu strategiile sale variate de construire a datelor negative, 
oferă un cadru pentru a studia aceste efecte. Lucrările anterioare arată că alegerea exemplelor 
negative afectează precizia predictivă și generalizarea în modelele de interacțiune 
anticorp-antigen și TCR-antigen(104–106,107–111); cu toate acestea, impactul asupra 
interpretabilității (mecanismele de legare deduse) este neexaminat. Pentru a investiga, am 
utilizat „Absolut!”(106) pentru a genera date sintetice anticorp-antigen cu diverse strategii de 
seturi de date negative (Fig. 8), concentrându-ne pe regiunile CDRH3. Rețelele neuronale 
simple și DeepLIFT(112–114) au fost utilizate pentru a evalua regulile biologice învățate (Fig. 8). 
Modelele antrenate cu date negative mai similare cu clasa pozitivă au generalizat mai bine la 
datele neobservate și au dezvăluit reguli de legare diferite în comparație cu cele antrenate cu 
exemple negative disimilare. Aceste tendințe s-au menținut și pe date experimentale (Fig. 
8,9)(115). Proiectarea și selecția exemplelor negative este o componentă critică, adesea trecută 
cu vederea, pentru construirea de modele ML robuste și interpretabile în aplicațiile biologice. 
 
Acest capitol final oferă o contribuție metodologică la modelele de învățare automată a 
repertoriilor receptorilor imuni, abordând provocările legate de calitatea datelor de antrenare și 
de atribuirea specificității antigenice. Acesta îmbunătățește limitările actuale de modelare 
AIRR-Seq pentru a spori interpretabilitatea și relevanța biologică, stabilind o bază 
computațională pentru studiile viitoare privind îmbătrânirea imună și schimbările repertoriului 
imun adaptiv. 
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Figura 8. Compoziția setului de date de antrenament modelează generalizarea și descoperirea de reguli a 
ML. 
Figură adaptată după Figura 1 din Ursu, E. et al. (2025), utilizată sub licența CC BY 4.0 

2. Metode 
Un set de date de legare anticorp-antigen semi-sintetic a fost generat utilizând cadrul de 
simulare Absolut! (Robert et al., Akbar et al.(106,116)). Acest set de date combină secvențe 
autentice de CDRH3 de șoarece(117) cu structuri de antigen PDB formatate în grilă 3D. 
Secvențele CDRH3 au fost andocate pe antigene rigide pentru a calcula energiile de legare 
utilizând potențialul statistic Miyazawa–Jernigan într-un model de grilă 3D (cadrul Absolut!, 
Robert et al.(106)). Secvențele au fost etichetate în funcție de percentila de afinitate de legare: 
afinitate mare (top 1%), slabă (1–5%) și ne-liganți (restul de 95%). Au fost utilizate date de la 
zece antigene. 
 
Pentru sarcinile de predicție, seturi de date echilibrate (30k antrenare, 10k testare) au fost 
create pentru fiecare antigen. Probele pozitive (liganți din top 1%) au fost comparate cu patru 
definiții de clasă negativă: Vs 1 (un singur antigen diferit), Vs 9 (nouă alte antigene agregate), 
Vs Slab (liganți slabi, 1–5%) și Vs Ne-ligant (>5%). Reproductibilitatea a fost asigurată cu șase 
împărțiri antrenare-testare și patru semințe aleatoare per împărțire. 
 
Modelul de bază de Învățare Automată a fost SN10(106), o rețea neuronală feedforward 
superficială antrenată pe CDRH3-uri codificate one-hot (intrare cu 220 de neuroni, strat ascuns 
ReLU cu 10 unități, ieșire sigmoidă). Acesta a fost comparat cu un Transformer mai profund și 
variante SN10 bazate pe PLM, utilizând încorporări pre-antrenate ESM2b (1280 dim.) și 
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AntiBERTa2 (1024 dim.)(118,119,120), generate prin EmbedAIRR. Interpretarea a fost explorată 
utilizând DeepLIFT(114) pentru a cuantifica contribuția aminoacizilor. În plus, Analiza Specifică 
Epitopului a implicat construirea de seturi de date restrânse la secvențele care se leagă de un 
singur epitop dominant (de exemplu, 1H0DE1). 

3. Rezultate și Discuții 
1. Compoziția secvențelor din setul de date de antrenare influențează performanța 
predicției în sarcinile de clasificare binară in-dinstribution (ID) și out-of-distribution 
(OOD) 
 
1.1 Configurația învățării automate pe date sintetice și experimentale 
Am început prin a investiga modul în care diferitele definiții ale clasei negative afectează 
performanța și generalizabilitatea modelelor de învățare automată supravegheată pentru 
predicția legării anticorp–antigen. Fiecare dintre cele patru sarcini a utilizat un set identic de 
probe pozitive — secvențe CDRH3 cu afinitate ridicată — dar a diferit prin modul în care a fost 
definită clasa negativă. 
 
Am utilizat date sintetice de secvențe CDRH3, adnotate cu energii de legare pentru zece 
antigene. Pentru fiecare antigen, clasa pozitivă a constat în secvențe care se încadrează în 
percentila de afinitate de top 1%. Am definit patru tipuri de clase negative: vs Nelegare 
(Non-binder): secvențe CDRH3 din cea mai mică percentilă de 95% a energiei de legare la 
același antigen; vs Slabă (Weak): liganzi slabi în percentila 1–5% pentru același antigen, 
formând un set disjunct față de vs Nelegare; vs 1: liganzi cu afinitate ridicată (top 1%) la un 
singur antigen distinct, excluzând cele care se leagă și de antigenul clasei pozitive; vs 9: o 
extindere a vs 1, cuprinzând liganzi cu afinitate ridicată la fiecare dintre celelalte nouă antigene, 
reprezentate în mod egal. 
 
Am antrenat modele SN10. Această arhitectură a fost aleasă pentru interpretabilitatea sa și 
performanța anterioară de benchmarking și a arătat rezultate comparabile cu modelele mai 
profunde. Pentru a valida concluziile noastre derivate din seturile de date sintetice, am replicat 
aceeași configurație experimentală utilizând setul de date care vizează HER2 publicat de 
Porebski et al. (115). 
 
1.2 Acuratețea Predicției în Distribuție (ID) Depinde de Compoziția Setului de Date de 
Antrenare 
Pentru a evalua capacitatea modelelor de a învăța reguli generalizabile, am măsurat mai întâi 
acuratețea în distribuție (ID) — performanța pe datele de testare cu aceleași definiții ale claselor 
pozitive și negative utilizate în timpul antrenării (Fig. 9a). La toate cele patru tipuri de sarcini, 
modelele au obținut o acuratețe ID ridicată, cu valori mediane care depășesc 0.85. A apărut un 
clasament clar între sarcini: modelele au funcționat cel mai bine pe „vs Nelegare” (interval: 
0.97–1.00, mediană: 0.99), urmate de „vs 1” (interval: 0.94–1.00, mediană: 0.98), „vs 9” 
(interval: 0.91–0.98, mediană: 0.94) și, în final, „vs Slabă” (interval: 0.85–0.98, mediană: 0.92), 
care s-a dovedit a fi cea mai dificilă (Fig. 9b). Mai mult, modelul SN10 a depășit regresia 
logistică (LR), în special în sarcina „vs Slabă”. Acest lucru sugerează că SN10 poate valorifica 
dependențele inter-poziționale în secvențe pe care LR nu le poate. 
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1.3 Disimilaritatea Secvenței Explică Variabilitatea în Acuratețea ID 
Pentru a înțelege de ce performanța ID a diferit între sarcini, am examinat relația dintre 
acuratețea modelului și disimilaritatea secvenței între seturile de date pozitive și negative. 
Folosind matricile de greutate pozițională (PWM), am calculat distanțele Jensen–Shannon 
(JSD) pentru a cuantifica divergența distribuțională. Am constatat că JSD a crescut în ordinea: 
„vs Slabă” < „vs 9” < „vs 1” < „vs Nelegare”, reflectând o divergență mai mare a secvenței între 
clasele pozitive și negative (Fig. 9c). Acest gradient a oglindit îndeaproape tendința de 
acuratețe ID, iar JSD a fost corelat semnificativ cu performanța modelului pentru sarcinile „vs 9” 
(r = 0.94), „vs 1” (r = 0.73) și „vs Nelegare” (r = 0.77) (toate p < 0.05), dar nu și pentru „vs Slabă” 
(r = 0.30, p ≥ 0.05) sau pentru oricare dintre controalele amestecate (Supp. Table 1, Supp. Fig. 
3a din Ursu, Minnegalieva et al. (121)). 
 
1.4 Acuratețea în Afara Distribuției (OOD) Este De Asemenea Modelată de Compoziția 
Setului de Date 
Am evaluat generalizarea în afara distribuției (OOD) (Fig. 9d). Acuratețea OOD a fost mai mică 
decât performanța în distribuție (ID), așa cum era de așteptat. 
 
Modelele antrenate pe „vs Nelegare” au arătat cea mai mare scădere (mediana ID 0.99 la OOD 
0.72–0.82) (Supp. Fig. 3d din Ursu, Minnegalieva et al. (121)). Modelele antrenate pe „vs 9” 
s-au generalizat cel mai bine la „vs 1” (0.94), în timp ce modelele „vs 1” au performat moderat 
(0.78 la „vs 9,” 0.72 la „vs Nelegare”). Alegerea antigenului negativ „vs 1” a afectat rezultatele 
(Supp. Fig. 5 din Ursu, Minnegalieva et al. (121)). 
 
„Vs Slabă” a fost cel mai dificil test OOD (acuratețe 0.58–0.71). În mod surprinzător, modelele 
antrenate pe „vs Slabă” s-au generalizat cel mai bine în ansamblu (0.90–0.96) (Fig. 9d). 
 
Acuratețea ID ridicată nu garantează generalizarea. De exemplu, „vs Nelegare” a produs o 
performanță ID excelentă, dar slabă OOD, în timp ce „vs Slabă” a fost cea mai dificilă sarcină 
ID, dar cea mai robustă în generalizare. Acest lucru subliniază rolul critic al designului clasei 
negative pentru modelele de învățare automată a legării anticorp–antigen. 
 
1.5 Datele Experimentale Confirmă Constatările din Seturile de Date Sintetice 
Pentru a valida aceste constatări în date din lumea reală, am analizat un set de date 
experimentale de legare anticorp–antigen publicat recent de Porebski et al. (115), care, la fel ca 
datele sintetice „Absolut!”, include secvențe CDRH3 adnotate cu afinitate împotriva HER2 (a se 
vedea Metodele). 
 

23 

https://sciwheel.com/work/citation?ids=16586231&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=16586231&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=16586231&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=15493903&pre=&suf=&sa=0


 

 
 
Figura 9. Acuratețea clasificării variază în funcție de antigeni, sarcinile de predicție a legării și similaritatea 
secvențelor pozitiv-negative.  
Figură adaptată după Figura 2 din Ursu, E. et al. (2025), utilizată sub licența CC BY 4.0 
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Modelele SN10 au fost antrenate pe fiecare sarcină și evaluate pe ambele seturi de testare, atât 
ID, cât și OOD (Fig. 9f). Modelul „vs Non-binder” a întâmpinat dificultăți la sarcina „vs Weak” 
(precizie OOD de 68%), în timp ce modelul „vs Weak” a generalizat bine (precizie OOD de 
88%). Așa cum s-a întâmplat în experimentele sintetice, antrenarea „vs Weak” a dus la limite de 
decizie mai strânse și mai generalizabile, care au echilibrat performanța pe toate sarcinile. Prin 
contrast, antrenarea „vs Non-binder” a condus la limite de decizie mai permisive, care au oferit 
o rată de rechemare (recall) ridicată în contextele ID, dar au dus la rezultate fals pozitive în 
scenariile OOD. 
 
2. Compoziția setului de date de antrenament determină acuratețea recuperării regulilor 
biologice 
După ce am stabilit că modul de compoziție a datelor de antrenament negative influențează 
acuratețea predicției și generalizarea în sarcinile de învățare automată (IA) supervizată binară 
bazată pe secvențe, am investigat în continuare dacă acesta afectează și capacitatea modelului 
de a învăța reguli de legare semnificative din punct de vedere biologic. 
 
2.1 Compoziția Setului de Date de Antrenament Impactează Învățarea Energiei de Legare 
a Anticorpilor 
Am întrebat mai întâi dacă modelele antrenate au capturat peisajul energetic al secvențelor de 
anticorpi. Deși unele studii au explorat predicția simultană a statusului de legare și a afinității 
(122,123), clasificarea binară (legare vs. non-legare) este adesea mai ușor de realizat 
experimental. Pentru a evalua dacă modelul nostru, SN10, învață implicit relațiile 
secvență-energie de legare, am calculat corelația între logiții de ieșire prezisă (adică, activările 
brute pre-sigmoid) și energiile de legare reale (ground-truth) pentru fiecare secvență. Acești 
logiți reflectă încrederea modelului în prezicerea apartenenței la clasa pozitivă (Fig. 10a). O 
distribuție 2D reprezentativă pentru antigenul 3VRL în sarcina „vs Weak” este prezentată în Fig. 
10b (insert). 
 
În general, modelele antrenate pe seturile de date „vs 1” și „vs 9” nu au reușit să învețe regulile 
energetice per-secvență, cu corelații slabe de –0,05 și, respectiv, –0,19 (Fig. 10b). Excepții 
notabile au fost antigenele 3VRL și 5E94, unde modelele au învățat energiile de legare mai 
eficient, indiferent de tipul setului de date negativ. În contrast, modelele antrenate cu negative 
„vs Weak” sau „vs Non-binder” au învățat în mod constant asocieri energetice semnificative 
pentru toți antigenii, atingând corelații Pearson mediane de –0,62 (interval: –0,33 la –0,90) și, 
respectiv, –0,51 (interval: –0,29 la –0,85). 
 
Aceste rezultate indică faptul că capacitatea de a învăța reguli bazate pe energie depinde 
puternic de tipul de date de antrenament negative. Acest lucru este susținut de o varianță 
semnificativă a valorilor de corelație între sarcini (ANOVA unidirecțională, p = 8,7e–58) și între 
antigeni (ANOVA unidirecțională, p = 4,6e–25). 
 
Pentru a evalua dacă învățarea regulilor energiei de legare afectează performanța modelului, 
am corelat asocierile logit–energie cu acuratețea predicției atât în ID (in-distribution), cât și în 
OOD (out-of-distribution). Asocieri semnificative au fost observate în setările ID pentru sarcinile 
„vs Weak” (r = –0,77) și „vs Non-binder” (r = –0,83) (Fig. 10c). Pentru sarcinile OOD, acuratețea 
a fost asociată semnificativ cu învățarea regulilor bazate pe logit în toate cazurile (Fig. supl. 4b 
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din Ursu, Minnegalieva et al. (121)). 
 
2.2 Compoziția Setului de Date de Antrenament Impactează Învățarea Contribuției 
Poziționale la Energia de Legare 
După ce am arătat că SN10 poate capta reguli energetice per-secvență, am investigat în 
continuare dacă acesta ar putea învăța și contribuțiile specifice poziției ale reziduurilor de 
aminoacizi la legare — un determinant esențial al recunoașterii imune. Ipoteza noastră a fost că 
regulile învățate corect ar avea ca rezultat corelații negative între valorile de atribuire (calculate 
prin DeepLIFT (114)) și energia de legare per-reziduu: reziduurile cu legare mai puternică 
(energie mai mică) ar trebui să primească o atribuire mai mare în predicțiile pozitive. 
 
În concordanță cu rezultatele per-secvență, cea mai puternică învățare a regulilor per-reziduu a 
avut loc în modelele antrenate pe seturile de date „vs Weak” (mediană r = –0,69) și „vs 
Non-binder” (mediană r = –0,71). În contrast, modelele antrenate pe sarcinile „vs 9” și „vs 1” au 
arătat asocieri mai slabe sau chiar inversate (–0,36 și, respectiv, –0,01). În special, pentru 
antigene precum 3VRL, 5E94 și 3RAJ, corelațiile au rămas ridicate în toate seturile de date 
negative — sugerând că, în unele cazuri, datele pozitive singure pot fi suficiente pentru a învăța 
reguli la nivel de poziție. 
 
Tipul sarcinii a influențat semnificativ învățarea regulilor (ANOVA unidirecțională, p = 3,5e–43). 
Nu a fost găsită nicio corelație semnificativă între acuratețea predicției ID și învățarea regulilor 
per-reziduu (Fig. 10e), subliniind importanța evaluării metricei de explicabilitate în mod 
independent. Cu toate acestea, acuratețea OOD a corelat cu acordul atribuire-energie în 
majoritatea setărilor „vs 1” și „vs 9” (Fig. supl. 4b din Ursu, Minnegalieva et al. (121)). În 
contrast, astfel de asocieri nu au fost observate pentru modelele antrenate pe seturile de date 
„vs Weak” sau „vs Non-binder”. 
 
2.3 Investigarea Amploarei Aditivității în Regulile Învățate 
Deși sarcinile „vs Weak” și „vs Non-binder” au produs profiluri de atribuire foarte similare, 
performanța lor diferită în afara distribuției (OOD) ne-a determinat să explorăm dacă aceste 
modele se bazau mai mult pe reguli de decizie aditive sau non-aditive. Mai exact, am urmărit să 
înțelegem dacă diferențele de generalizare ar putea fi explicate prin amploarea interacțiunilor de 
caracteristici învățate în timpul antrenamentului. Pentru a evalua acest lucru, am antrenat 
modele de regresie logistică. Aceste modele nu au capacitatea de interacțiune a 
caracteristicilor. Ca atare, ele servesc ca etalon pentru învățarea pur aditivă a regulilor. 
Constatările implică faptul că sarcinile „vs Non-binder” pot fi rezolvate în principal folosind 
caracteristici aditive, în timp ce „vs Weak” necesită reprezentări mai complexe, bazate pe 
interacțiune. Acest lucru se aliniază cu performanța superioară a SN10 față de regresia logistică 
în sarcini mai dificile, cum ar fi „vs Weak” (Fig. supl. 3c din Ursu, Minnegalieva et al. (121)), 
susținând ideea că SN10 beneficiază de capacitatea sa de a modela interacțiunile 
caracteristicilor. 
 
Discuție 
Definirea datelor pozitive și negative influențează fundamental comportamentul modelelor de 
învățare automată, dar rămâne o zonă insuficient explorată în aplicațiile imunologice de 
machine learning (ML). În acest studiu, am demonstrat că atât performanța în distribuție (ID) și 

26 

https://sciwheel.com/work/citation?ids=16586231&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=16396509&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=16586231&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=16586231&pre=&suf=&sa=0


 
în afara distribuției (OOD), cât și interpretabilitatea regulilor învățate, depind puternic de 
compoziția setului de date de antrenament în contextul predicției legării anticorp-antigen. 
 
Mai general, rezultatele noastre subliniază faptul că organizarea datelor de antrenament nu 
este doar un pas pregătitor, ci o considerație de design centrală în dezvoltarea de modele ML 
robuste și generalizabile. Planificarea și justificarea atentă a compoziției setului de date sunt 
critice pentru obținerea de rezultate predictive valide și pentru descoperirea de reguli cu 
semnificație biologică, în special atunci când modelele sunt aplicate dincolo de scopul imediat al 
datelor lor de antrenament. 
 
Lucrarea noastră demonstrează că definirea datelor negative de antrenament are un impact 
profund asupra comportamentului modelului ML, incluzând precizia predicției, generalizarea (ID 
vs. OOD) și descoperirea de reguli de legare cu semnificație biologică în interacțiunile 
anticorp-antigen. În ciuda importanței sale, acest subiect rămâne insuficient explorat în 
domeniul anticorpilor în comparație cu modul în care este tratat în studiile de predicție a 
epitopilor TCR (107–111). 
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Figura 10. Compoziția setului de date negativ modelează capacitatea modelului de a învăța regulile 
de legare pentru secvențele pozitive. 
Figură adaptată după Figura 3 din Ursu, E. et al. (2025), utilizată sub licența CC BY 4.0 
 
Descoperirile noastre subliniază că: Definirea atentă a seturilor de date negative este crucială 
pentru modelele ML interpretabile și generalizabile în imunologie; Performanța OOD ar trebui să 
fie o metrică explicită în evaluarea descoperirii de reguli și a interpretabilității modelului, iar 
metodele actuale de atribuire au limitări, fiind necesare noi tehnici pentru a surprinde 
interacțiunile de caracteristici, cum ar fi epistazia, care stau probabil la baza fenomenelor 
biologice complexe (124–126). 
 
În concluzie, descoperirile noastre demonstrează că: Modelele antrenate pe seturi de date cu 
eșantioane pozitive și negative bine echilibrate generalizează mai bine și învață reguli biologice 
mai robuste; Designul setului de date negative nu este doar un pas tehnic, ci un determinant 
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central al comportamentului și interpretabilității modelului; Lucrările viitoare ar trebui să 
exploreze în mod sistematic strategii pentru selectarea cazurilor negative dificile (hard 
negatives) (127), să investigheze secvențele de tip "aproape-ratate" (near-miss sequences) și 
să dezvolte metode de atribuire care să surprindă determinanții complecși ai legării. 

VI. Considerații finale 
Lucrarea prezentată în această teză a fost motivată de o întrebare centrală: cum putem înțelege 
mai bine complexitatea biologică a îmbătrânirii prin prisma omicii moderne, a biologiei 
computaționale și a învățării automate (machine learning)? Pentru a aborda acest subiect, am 
integrat seturi de date multidimensionale, am dezvoltat instrumente computaționale inovatoare 
și am colaborat interdisciplinar pentru a explora mecanismele cheie ale îmbătrânirii dintr-o 
perspectivă de sistem. 
 
De-a lungul celor cinci capitole, am abordat îmbătrânirea din unghiuri distincte, dar 
interconectate. În Capitolul II, am explorat semnăturile transcriptomice la 41 de specii de 
mamifere, descoperind tipare de expresie genică conservate și specifice organelor, asociate cu 
durata de viață. Capitolul III a extins intersecția dintre îmbătrânire și remodelarea fibrotică în 
plămâni, evidențiind atât tipare moleculare conservate, cât și semnături unice de îmbătrânire 
într-un model de fibroză bine caracterizat. În Capitolul IV, m-am concentrat pe comunicarea 
intercelulară — o trăsătură distinctivă a îmbătrânirii care rămâne insuficient studiată — și am 
co-dezvoltat scDiffCom și scAgeCom, oferind un cadru scalabil și generalizabil pentru a mapa și 
cuantifica perturbările de semnalizare asociate vârstei. În cele din urmă, în Capitolul V, m-am 
îndreptat către sistemul imunitar adaptiv, combinând învățarea automată cu date AIRR-Seq 
pentru a examina modul în care performanța modelului și înțelegerea biologică sunt influențate 
de compoziția seturilor de date de antrenament — o contribuție fundamentală pentru studiile 
viitoare privind îmbătrânirea repertoriului imun. 
 
Pe tot parcursul acestei teze, am căutat nu doar să generez rezultate, ci să contribui cu 
instrumente, cadre și metodologii care să sprijine comunitatea de cercetare a îmbătrânirii și în 
științele vieții. Aceasta include strategii de învățare automată interpretabile, protocoale analitice 
inter-specifice și seturi de date robuste, puse la dispoziție public pentru o reutilizare mai largă. 
Cercetarea mea reflectă convingerea că o înțelegere biologică profundă apare adesea la 
intersecția dintre bogăția datelor, rigoarea metodologică și colaborarea interdisciplinară, dar și 
înțelegerea biologică fundamentală. 
 
Deși multe întrebări rămân deschise, sper că această teză oferă un pas semnificativ spre 
înțelegerea determinanților moleculari ai îmbătrânirii. Lucrările viitoare pot extinde instrumentele 
dezvoltate aici, aplicându-le la seturi de date umane longitudinale, studii intervenționale sau 
screening-uri terapeutice. Obiectivul final rămâne același: de a descurca complexitatea 
îmbătrânirii în moduri care pot informa strategii pentru vieți mai sănătoase și mai lungi. 
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