ACADEMIA ROMANA
SCOALA DE STUDII AVANSATE A ACADEMIEI ROMANE

INSTITUTUL DE BIOCHIMIE

REZUMAT
TEZA DE DOCTORAT

Analiza modificarilor repertoriului imun in timpul imbatranirii

CONDUCATOR STIINTIFIC:
CS | Dr. Andrei-J. Petrescu

DOCTORAND:
Eugen Ursu

Bucuresti, 2025



Cuprins

CUDIINS ettt ettt ettt 1
L NP OAUCEIE ittt ettt e et e et e e e e 1
1 T T ANIT 8. ittt ettt et et et e et et et et et et et e et et et ere et et st eraratrans 1
2. Biologie computationala si inteligenta artificiald...............veeeieieiieiieieeiiiiiiieeiiiiiiiiieeieieeeeeieiiinnn 3
Il. Expresia genica la specii diferite dezvaluie noi gene candidate implicate in imbatranire si longevitate. 5
Prezentare QENEIaAIA. ... ..ooouu. oo eeeeeieeesetiieesssssieessssiiiiessssiiieiisiiaieeseeias 5
1 INtrOdUCEIE. i 5
A YL (=) (0T L= T PP PP PPPPTTPPTTPT 5

PreZENtare QN A . ittt ittt ettt ittt it iieiieiieiieiiietiesteesteestesstesiesiiesiieeiiieiireiiiesiiesses 12
L It O T U B . sttt ittt i it tie ettt teestessssesssesssssessessssssssssssssssesssessssssssessssssssssstesssesstesssessresiecsiecerresesieees 13

2. M O, et eeeeeteee et eeiieeettireeetteaiiieieiitireeriiaiaeieieieirreeees 21
3. Rezultate Si DIiSCULI..ueureeuiiiiiee ettt 22
VI. Consideratii fiNAl€......uuuieiiieiieieiiiei e e 29
11 o] oo [ir= i = TP PP PP PP PP PP P PPPPP 29

|. Introducere

1. Imbatranirea

Imbatranirea este un proces biologic complex, cu un impact profund asupra sanatatii si a
riscului de boala. Cercetarile contemporane o considera un fenomen reglementat, conturat de
cele noua ,semne distinctive ale imbatranirii” interconectate (instabilitatea genomica, scurtarea
telomerilor, modificarile epigenetice, pierderea proteostazei, detectarea dereglata a nutrientilor,
disfunctia mitocondriala, senescenta celulara, epuizarea celulelor stem si comunicarea
intercelulara alterata)(1). Acest cadru este fundamental, ghidand investigarea mecanismelor
celulare si a tintelor de interventie. Caile cheie, conservate, care influenteazad imbatranirea
includ semnalizarea insulina/IGF-1 si caile mTOR(2,3). Modularea experimentala a acestora,
alaturi de interventii precum restrictia calorica (RC) si compusii care imitda RC (rapamicina,
metformina, terapiile bazate pe NAD+), a extins durata de viatad la diverse modele(2,3).
Tn’;elegerea imbatranirii are implicatii largi pentru sanatatea publica, deoarece varsta este
principalul factor de risc pentru bolile cronice(4). Domeniul gerontologiei cauta sa vizeze
mecanismele imbatranirii pentru a intarzia sau a preveni simultan multiple patologii(5).

Imbatranirea este strans legatd de dezvoltarea majoritatii  bolilor cronice (tulburari
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neurodegenerative, boli cardiovasculare, sindroame metabolice, cancer)(6). Schimbarea
demografica catre populatii mai in varsta exercita o presiune asupra sistemelor de sanatate si a
cheltuielilor, deoarece o mare parte din resurse este alocata gestionarii bolilor cronice, legate de
varsta, in special la sfarsitul vietii(4). Sunt necesare strategii proactive, preventive.

Obiectivul cercetarii in domeniul imbatranirii se muta de la simpla extindere a duratei de viata
(lifespan) la extinderea duratei de sanatate (healthspan) (anii traiti in stare buna de sanatate)
(7). Medicina actuala trateaza de obicei bolile cronice izolat, ignorand radacina lor comuna in
procesul fundamental de imbatranire(6). O abordare mai holistica implica interventia in
mecanismele biologice ale imbatranirii in sine pentru a imbunatati rezultatele generale de
sanatate si a reduce multimorbiditatea(1). Interventiile care vizeaza cai legate de imbatranire,
cum ar fi rapamicina, senoliticele si amplificatorii de NAD+, sunt studiate pentru capacitatea lor
de a Tmbunatati sanatatea pe multiple domenii, actionand asupra semnelor distinctive ale
imbatranirii (reciclare celulara afectata, inflamatie, disfunctie mitocondriala)(8).

Imbétranirea este un proces condus de o constelatie de procese biologice de deteriorare,
distilate Tn proeminentul model al ,semnelor distinctive ale imbatranirii” ("hallmarks of aging") de
catre Lopez-Otin et al.(1). Acest cadru conecteaza diverse evenimente celulare, cum ar fi
deteriorarea ADN-ului, senescenta, intretinerea deficitara a proteinelor si caile metabolice
dereglate (semnalizarea insulina/IGF-1, mTOR, sirtuine)(1.9). Din perspectiva evolutiva,
imbatranirea este explicata de teoriile acumularii mutatiilor, pleiotropiei antagoniste si a somei
de unica folosinta ("disposable soma"), care se concentreazad pe presiunea selectiva si
compromisuri  (trade-offs)(10). Viziunile mecaniciste, precum teoria radicalilor liberi, se
concentreaza pe deteriorare, desi intelegerea actuala este mai nuantata(11).

Tehnologiile Omice (genomica, transcriptomica, proteomica, metabolomica, epigenomica) ofera
0 viziune cuprinzatoare, multistratificatda a modificarilor moleculare in timpul Tmbatranirii,
identificand biomarkeri si urmarind declinul asociat vérstei(12). Biologia computationala si
bioinformatica sunt esentiale pentru interpretarea acestor seturi vaste de date, sustinand
analiza cailor metabolice, modelarea retelelor si dezvoltarea de predictori ai varstei biologice,
cum ar fi ceasurile epigenetice(13.14). Inteligenta artificiala (IA) si invatarea automata (ML)
imbunatatesc in continuare analiza prin descoperirea tiparelor subtile, modelarea traiectoriilor
de imbatranire, identificarea profilurilor de risc si prioritizarea tintelor terapeutice, accelerand
calea catre medicina de precizie pentru imbatranire(15). Lucrarea noastra valorifica aceste
tehnologii pentru a investiga imbatranirea sistemului imunitar si progresia fibrozei.

Biologia comparata ofera perspective prin studierea speciilor cu durate de viata diverse (de
exemplu, sobolani-céartitd golasi, balene de Groenlanda), evidentiind mecanisme de longevitate
conservate sau adaptate in mod unic, cum ar fi proteostaza imbunatatita, repararea ADN-ului si
raspunsuri robuste la stres(16.17). Studiile inter-specii ajuta la distingerea modificarilor legate
de varsta de timpul cronologic, observand modul in care diferite specii gestioneaza
imbatranirea pe intervale de timp foarte diferite, aratdnd adesea ca mamiferele cu viata lunga
suprima inflamatia si mentin integritatea genomica mai eficient(18). Analiza transcriptomica
(RNA-Seq) intre specii identifica semnaturi ale expresiei genice legate de longevitate, cum ar fi
reglarea in jos a cailor de crestere si reglarea in sus a genelor de intretinere, oferind indicii
despre caile moleculare conservate relevante pentru sanatatea umana(19). Capitolul Il al
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acestei teze utilizeaza transcriptomica inter-specii pentru a identifica modificari ale expresiei
genice, comune si specifice speciei, legate de imbatranire, apararea impotriva stresului si
reglarea imunitara.

Fibroza (depunerea excesiva de matrice extracelulara) este o caracteristica esentiala a
disfunctiei tisulare legate de varstd in organe precum inima, rinichii, ficatul si plamanii(20).
Modificarile asociate Tmbatranirii (leziuni oxidative, inflamatie cronica, activarea fibroblastelor)
creeaza un mediu fibrogenic. Fibroza pulmonara idiopatica (FPI) este un exemplu primordial,
asociat varstei, afectdnd predominant persoanele de peste 60 de ani(21). Mecanistic,
imbatrénirea promoveaza fibroza pulmonara prin senescenta celulelor epiteliale, fenotipul
secretor asociat senescentei (SASP) pro-fibrotic, disfunctia mitocondriala si semnalizarea
inflamatorie persistenta (TGF-3, IL-6)(22,23). Capitolul lll prezinta o lucrare colaborativa care
studiaza semnele imbatranirii in fibroza pulmonara utilizand un model murin de fibroza
pulmonara indusa de bleomicina.

Comunicarea intercelulara perturbata este o marca sistemica a imbatranirii, manifestata ca
inflamatie cronica de grad scazut (inflammaging), supraveghere imuna afectata si semnalizare
endocrina modificata(1). ,Inflammaging”(24) este alimentat partial de celulele senescente care
elibereaza factori SASP (citokine, chemokine) ce perturba functia tisulara si imuna, creand o
bucla de feedback daunatoare(25). Imunosenescenta si modificarile in semnalizarea endocrina
contribuie in continuare la disfunctie(26). Comunicarea alterata este un motor cheie al
imbatranirii sistemice. In Capitolul IV, descriu contributiile mele: 1) dezvoltarea unui instrument
de bioinformatica, scDiffCom, pentru inferenta modificarilor in comunicarea intercelulara din
datele scRNA-Seq si 2) utilizarea scDiffCom pentru a construi un atlas al modificarilor legate de
varsta in comunicarile intercelulare la soareci (scAgeCom).

Imunosenescenta — declinul sistemului imunitar legat de varsta — are ca rezultat raspunsuri
diminuate la agentii patogeni, eficacitate redusa a vaccinurilor si boli asociate varstei
crescute(27). O componenta de baza este deteriorarea raspunsului umoral adaptativ, marcata
de modificari in compartimentul celulelor B si de o diversitate redusa a repertoriului de
anticorpi(28). Secventierea Repertoriului Receptorilor Imuni Adaptativi (AIRR-Seq) permite o
analiza profunda a secventelor receptorilor celulelor B si T(29). Cu toate acestea, studiile de
imbatranire se confrunta cu provocari din cauza seturilor de date transversale si a protocoalelor
analitice inconsistente(30). Analiza traditionala a repertoriului nu reuseste adesea sa surprinda
modelele complexe, neliniare ale sistemului imunitar in curs de imbatranire, ceea ce necesita
otranzitie catre invatarea automata (ML). Capitolul V descrie o lucrare colaborativa in
imunologia computationala axatd pe impactul datelor de antrenare a repertoriului imunitar
asupra modelelor ML, care este cruciala pentru dezvoltarea de instrumente pentru o mai buna
intelegere viitoare a dinamicii repertoriului imunitar legate de varsta.

2. Biologie computationala si inteligenta artificiala

Tehnologile omice de finaltd performantd (high-throughput), cum ar fi genomica,
transcriptomica, proteomica, metabolomica si epigenomica, au generat seturi extinse de date
biologice(13). Amploarea si complexitatea acestor date necesita metode computationale
sofisticate. Biologia computationala si bioinformatica ofera infrastructura esentiala pentru
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gestionarea datelor, preprocesare si interpretare statistica. Mai recent, invatarea automata
(Machine Learning - ML) si inteligenta artificiala (IA) au devenit proeminente, excelénd in
detectarea de tipare complexe, adesea neliniare, in datele omice(31). Influenta IA se intinde de
la domenii precum prezicerea activitatii de reglare a genelor din secventele ADN(32) pana la
analiza populatiilor celulare in transcriptomica unicelulara. Aceasta intersectie faciliteaza
tranzitia de la modele descriptive la modele predictive si mecanice, in special in cercetarea
imbatranirii.

Secventierea ARN (RNA sequencing - RNA-Seq) este un instrument transformator pentru
profilarea globala a expresiei genice, oferind sensibilitate superioara si un interval dinamic mai
larg in comparatie cu metodele mai vechi(33). Aceasta permite analize ulterioare, cum ar fi
expresia diferentiala si constructia de retele, oferind o perspectiva asupra cailor biologice si
mecanismelor bolilor(34). Aparitia secventierii ARN unicelulare (scRNA-Seq) a revolutionat si
mai mult domeniul, rezolvand expresia genica la nivelul celulei individuale. Spre deosebire de
RNA-Seq in masa (bulk), scRNA-Seq dezvaluie diversitatea si eterogenitatea din tesuturile
complexe, facand posibild identificarea tipurilor de celule rare si a traiectoriilor de origine(35).
Cercetarea mea a valorificat in mod extensiv puterea de inalta rezolutie a acestor tehnologii, iar
analizele si descoperirile prezentate in Capitolele II, Il si IV s-au bazat pe perspectivele
profunde oferite de RNA-Seq si ScCRNA-Seq.

Invatarea automatd (ML) este parte integranta a stiintelor vietii moderne pentru detectarea si
predictia de tipare, in special in domenii omice si imagistica biomedicala. ML-ul timpuriu s-a
concentrat pe acuratete ridicata, folosind adesea modele de tip ,cutie neagra” (black box), cum
ar fi retelele neuronale profunde(36). Din cauza preocuparilor din domenii precum medicina,
accentul s-a mutat catre invatarea automata interpretabild. Tehnici precum SHAP si LIME
permit cercetatorilor sa inteleaga modul in care modelele iau decizii, legand intrari specifice (de
exemplu, gene) de rezultate(37). Aceasta interpretabilitate a fost cruciala pentru descoperirea
genelor cauzale si decodarea logicii biologice(38). In cercetarea imbatranirii, interpretabilitatea
este vitala pentru traducerea predictiilor in semnificatie biologica. in propria mea lucrare,
interpretabilitatea a fost un pilon central al investigatiilor din Capitolele Il, IV si V.

Diversitatea sistemului imunitar adaptiv se bazeaza pe milioane de receptori unici ai celulelor B
(BCR) si anticorpi. Secventierea Repertoarului de Receptori Imuni Adaptivi (Adaptive Immune
Receptor Repertoire Sequencing - AIRR-Seq) permite profilarea in profunzime a acestei
diversitati, revolutionand studiul imunitatii umorale intr-o varietate de conditii(39). AIRR-Seq
surprinde milioane de secvente BCR in paralel, permitand reconstructia clonotipurilor si a
relatiilor de origine (liniaj) (29). Analiza acestor date vaste si complexe necesitd cadre
computationale robuste pentru sarcini precum alinierea secventelor, gruparea (clustering) si
identificarea mutatiilor (30). Cercetarea mea contribuie la acest domeniu prin avansarea
tehnicilor de invatare automata pentru AIRR-Seq, concentrandu-se pe provocari fundamentale,
cum ar fi selectarea datelor de antrenare negative pentru a construi modele mai relevante din
punct de vedere biologic. Acest efort fundamental, descris in Capitolul V, urmareste in cele din
urma sa reduca lacunele in cartografierea dinamicii repertoriului imun in timpul imbatranirii.
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ll. Expresia genica la specii diferite dezvaluie noi gene

candidate implicate in imbatrénire si longevitate

*Kulaga, A. Y., *Ursu, E., *Toren, D., Tyshchenko, V., Guinea, R., Pushkova, M., Fraifeld, V. E.
& Tacutu, R. Machine Learning Analysis of Longevity-Associated Gene Expression Landscapes
in Mammals. Int. J. Mol. Sci. 22, (2021).

* denota first co-authorship
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fost realizat sub coordonarea si supravegherea Dr. Robi Tacutu si Prof. Vadim E. Fraifeld.

Prezentare generala

In domeniul cercetarii imbatranirii, o provocare centrald este intelegerea modului in care
variatile Tn expresia genica influenteaza longevitatea observatd in réndul diferitelor specii.
Acest studiu a urmarit sa clarifice relatiile complexe dintre diferentele transcriptomice si durata
maxima de viatd (DMV) prin abordarea limitarilor modelelor liniare conventionale si a impactului
factorilor de confuzie, cum ar fi rata metabolica, perioada de gestatie si masa corporala.

1. Introducere

Investigarea diversitatii in DVS (Durata de Viata Maxima a Speciei) alaturi de transcriptia genica
la nivelul speciilor ofera perspective valoroase asupra mecanismelor evolutive ale longevitatii.
Cercetarile recente au evidentiat diferente distincte in profilurile de expresie genica intre
mamiferele cu viata lunga si cele cu viata scurtd(40-43). in special, speciile cu viatd exceptional
de lunga prezinta niveluri crescute de gene asociate cu intretinerea si repararea ADN-ului,
ubiquitinarea, raspunsurile imune, apoptoza si autofagia(44). Supraexpresia genelor de
reparare a ADN-ului este evidentiata in mod constant in studiile de culturi celulare
inter-specii(45), iar in cateva organe de mamifere, expresia genelor de raspuns imun se
coreleaza pozitiv cu DVS(42). Adaptarile pro-longevitate la nivel transcriptomic sunt clar
documentate la specii precum liliecii(46), sobolanii-cartita golasi(41,47) si balenele(40,44).
Aceste dovezi subliniaza potentialul studiilor transcriptomice comparative de a descoperi baza
genetica a longevitatii.

Studiile transcriptomice comparative traditionale s-au bazat adesea pe metode liniare, ignorand
procesele biologice non-liniare. Progresele recente ofera, totusi, alte solutii.

2. Metode

Am incadrat problema ca o sarcina de reducere a caracteristicilor, cautand un set minim, extrem
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de predictiv de gene asociate cu variatia Duratei Maxime de Viata (DMV) in diferite organe.
Protocolul nostru integreaza date transcriptomice de la specii multiple pentru a detecta gene
asociate longevitatii (GAL) folosind trei metode complementare: modelare liniara pentru tendinte
specifice organelor, LightGBM combinat cu SHAP pentru evaluarea influentei si interactiunilor
genelor si modelare cu retele Bayes-iene pentru a deduce potentiale legaturi cauzale cu DMV.

Acest studiu a inclus specii de mamifere cu date RNA-Seq disponibile pentru tesuturi sanatoase
de ficat, rinichi, plaman, creier sau inima din Arhiva de Citiri Secventiale NCBI (NCBI Sequence
Read Archive), cu adnotari ale transcriptomului preluate din Baza de Date Ensembl Compara
(48). Un total de 408 de probe de la 38 de specii, acoperind cinci organe, au fost procesate
folosind un protocol standardizat de cuantificare RNA-Seq. Datele de ortologie si adnotarile
transcriptomului au fost preluate din Ensembl versiunea 99. In total au rezultat 11831 de gene.

Fastp (versiunea 0.20.1)(49) a gestionat controlul calitati si trimming-ul. Cuantificarea
transcriptelor a fost realizata cu Salmon (versiunea 1.4.0)(50), iar tximport (versiunea 3.12) a
agregat expresia la nivel de gena. Numarul brut de citiri a fost normalizat utilizand metoda
transcriptelor per milion (TPM) pentru analiza comparativa inter-specii.

Au fost dezvoltate modele liniare specifice organelor pentru a identifica genele asociate cu
DMV. Activitatea cailor metabolice a fost evaluata folosind analiza de imbogatire a seturilor de
gene pentru o singura proba (ssGSEA) cu caile KEGG(51).

Pentru a explora tipare non-liniare, a fost utilizata o selectie inversa in doi pasi, combinand
LightGBM si SHAP. Sase modele de regresie independente au prezis initial diferite trasaturi de
istorie a vietii (inclusiv DMV) din expresia genica. Genele identificate in orice model au fost
grupate pentru o a doua faza pentru a rafina setul asociat cu DMV. A fost aplicata o validare
incrucisata riguroasad pe 5 sub-esantioane (5-fold cross-validation) cu stratificare sortata,
repetata de zece ori, cerand valori SHAP non-zero pentru semnificatie. O strategie stricta de
impartire a datelor a asigurat ca predictiile s-au bazat pe tipare genice, nu pe identificarea
speciei. Primele 15 gene au fost selectate pe baza cotului graficului de importantd a
caracteristicilor SHAP (Fig. Suplimentara S4 din Kulaga, Ursu, Toren et al.(52)).

Retelele Bayes-iene au fost folosite pentru a cartografia independenta conditionata si pentru a
deduce potentiale conexiuni cauzale cu DMV. Algoritmul SES(53) a fost utilizat pentru selectia
caracteristicilor, identificAnd genele in invelisul Markov al DMV. SES a fost aplicat setului de
antrenare cu date imputate, iar semnatura genica rezultata a fost evaluata de un model
LightGBM antrenat pe datele neimputate, selectdnd semnatura cu cea mai mica RMSE.

Cele trei abordari de modelare au generat liste clasificate bazate pe metrici distincte: (1)
LightGBM-SHAP: frecventa SHAP mediu absolut non-zero, Kendall’s tau si SHAP mediu
absolut; (2) Regresia Liniara: R2 maxim; si (3) Retele Bayes-iene: frecventa relativa in
semnaturi. O clasificare compozita finala a fost derivata prin insumarea rangurilor a sase metrici
cheie: frecventa de selectie, corelatia Kendall’s tau, valoarea SHAP medie absoluta, cel mai
mare R2 liniar, frecventa relativa in retelele Bayes-iene si indicatorul mentiunii in GenAge(54).
Un model liniar multinivel Bayesian cu coeficienti aleatori specifici organelor a fost construit
pentru a analiza setul final de gene selectate.
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Pe baza clasificarii compozite si a unui grafic elbow (Fig. Suplimentara S4 din Kulaga, Ursu,
Toren et al.(52)), au fost identificate primele 15 gene. O serie de modele LightGBM-SHAP,
incorporand subseturi de la primele 5 pana la primele 15 gene, au fost dezvoltate. Evaluarea
preciziei modelului a indicat faptul ca modelul cu primele 6 gene a oferit cel mai bun compromis
intre simplitate si performanta, aratand o reducere notabila a pierderii Huber (0.8) in comparatie
cu modelul cu primele 5 gene.

3. Rezultate si Discultii

Un set de date de expresie genica inter-specii, compilat din date RNA-Seq disponibile public,
ofera un cadru comparativ extins. Acest set de date contine date de expresie genica pentru
cinci organe majore (ficat, rinichi, plaman, creier si inima) din 408 de probe, provenind de la 41
de specii de mamifere. Variabilele specifice fiecarei specii, incluzand DMV, masa corporala,
temperatura, rata metabolica, perioada de gestatie si continutul GC al ADN-ului mitocondrial, au
fost incorporate dupa normalizare, deoarece reprezintd factori cheie ai longevitatii(55-57).
Pentru a explora legatura dintre expresia genica si DMV, am utilizat regresia liniara, modelarea
interpretabild LightGBM-SHAP si analiza retelelor bayesiene. Integrarea rezultatelor din aceste
modele a identificat gene care se claseaza in mod constant ca fiind principalii predictori ai DMV
(vezi Fig. 1).

Modelele liniare au fost utilizate pentru a evalua relatia dintre expresia a 11831 de ortologi
conservate evolutiv si Longevitatea Maxima a Speciei (LMS) la 33 de specii de mamifere (Fig.
2a). Numarul de gene asociate semnificativ cu LMS (FDR < 0,05, R2 > 0,3) a variat in functie
de organ, atingdnd un varf in plaman (756) si cel mai scazut nivel in rinichi (154). Valorile
mediane R2 au fost consistente (0,35-0,38).
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Figura 1. Reprezentarea schematica a fluxului de lucru pentru analiza intre specii.
Figura adaptata din Figura 1 din Kulaga, Ursu, Toren. et al. (2021), utilizata sub licenta CC BY 4.0.

Doar trei gene (CRYGS, TCFL5 si SPATA20) au fost corelate pozitiv cu DVM in toate cele cinci
organe. Concentrandu-ne pe creier, ficat si rinichi, numarul de gene asociate cu DVM a crescut
la 12, incluzadnd SPATA20, TCFL5 si CRYGS (Tabel Supl. S2 din Kulaga, Ursu, Toren et al.(52)).

Multe gene asociate cu DVM au fost corelate si cu alte trasaturi de istorie a vietii (de exemplu,
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masa corporala, rata metabolica), sugerand asocieri indirecte. Doar cateva gene au fost
corelate in mod unic cu DVM: una in ficat (CERS4), patru in inima si 131 in plamani; niciuna in
creier sau rinichi. Totusi, rezultatele pentru inima si plaméni ar trebui interpretate cu prudenta
din cauza dimensiunilor mai mici ale esantioanelor.

Am utilizat abordarea proiectiei semnaturii (ssGSEA) pentru a analiza relatia dintre activitatea
cailor biologice, estimata din expresia genica in organe, si durata de viatd maxima (DVM) (Fig.
2b). Analiza noastra s-a concentrat pe cai de imbatranire/longevitate deja stabilite, incluzand
semnalizarea mTOR si a insulinei, repararea ADN-ului, proteoliza mediatd de ubiquitind si
adeziunea focala(58—60).

Desi semnalizarea mTOR nu a fost corelata semnificativ cu DVM, multiple cai legate de
repararea ADN-ului (repararea erorilor de imperechere — mismatch, excizia nucleotidica, excizia
bazelor, recombinarea omoloaga si jonctiunea capetelor non-omoloage) au prezentat corelatii
pozitive robuste. Cateva alte cai au fost corelate pozitiv si negativ cu DVM. in mod neasteptat,
cai care nu sunt legate in mod traditional de longevitate, cum ar fi apoptoza, moleculele de
adeziune celulara si semnalizarea ErbB, au fost corelate pozitiv cu DVM. Am validat cai de
longevitate cunoscute (apoptoza, repararea ADN-ului, raspunsurile imune) si am evidentiat
unele mai putin explorate — incluzand semnalizarea PPAR, metabolismul glutationului si
semnalizarea ErbB — ca fiind domenii promitatoare.
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Figura 2. Corelatii liniare intre expresia genica gi caile biologice cu DMV,

(a) Corelatii liniare de varf intre expresia genica si trdséaturile speciei. Aceasta harta termica evidentiaza
relatiile semnificative statistic (FDR < 0.05, R? > 0.3) intre nivelurile de expresie genica si trasaturile
cheie ale speciei. (b) Corelatii liniare de varf intre MLS si scorurile de imbogétire a caii (ES). A doua
harta termicéa vizualizeazé asocierile cheie intre MLS si scorurile de imbogétire a céii (ES).

Figura adaptata din Figura 2 Kulaga, Ursu, Toren. et al. (2021), utilizata sub licenfa CC BY 4.0.
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Pentru a identifica relatiile neliniare dintre expresia genica si Durata Maxima de Viata (DMV),
am utilizat un cadru de invatare automata interpretativ, folosind LightGBM si SHapley Additive
exPlanations (SHAP)(61,37). Un model de referinta care utilizeaza trasaturile de istorie a vietii
speciei (masa corporala, rata metabolica, temperatura, perioada de gestatie si continutul GC
mitocondrial) a atins o precizie ridicata (R2 = 0,96). Continutul GC al ADN-ului mitocondrial si
perioada de gestatie au fost cei mai influenti predictori, in concordantd cu descoperirile
anterioare(62),(56). In continuare, o selectie descendenta de trasaturi in doua etape, cu
LightGBM-SHAP, a evaluat influenta fiecarui gena asupra DMV. Aceasta abordare a rafinat un
set initial la 57 de gene, imbunatatind substantial performanta predictiva (Etapa Il: R2 a crescut
de la 0,90 la 0,95; MAE a scazut de la 4,73 la 3,04). Dintre cele 57 de gene, a fost remarcata o
suprapunere nesemnificativa, dar consistenta (17 gene) cu genele asociate longevitatii (GALs)
documentate in baza de date GenAge(54), inclusiv GNAS si TERT. Prioritizand genele dupa
valorile absolute medii SHAP, am identificat 57 de gene cu contributii predictive semnificative (\>
0,1 ani). Graficul de sinteza SHAP (Fig. 3) ilustreaza influenta lor relativa.
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Figura 3. Explicatii SHAP ale Expresiei Genice si Predictiilor MLS
(a) Diagrama Sumarizatoare SHAP (SHAP Summary Plot). (b) Diagrama Decizionald SHAP pentru
Predictii Individuale (SHAP Decision Plot). (c) Harta Termicé de Interactiune SHAP pentru Perechi de
Gene (SHAP Interaction Heatmap). (d) Harta Termicd bazatd pe SHAP a Contributilor Genice per
Esantion (SHAP-based Heatmap of Gene Contributions per Sample).

Figura adaptata din Figura 3 Kulaga, Ursu, Toren. et al. (2021), utilizata sub licenta CC BY 4.0.

Cinci dintre primele 15 gene (DYRK4, NFKBIL1, TRAPPC2L, ETV2 si CHCHD3) au influentat
substantial predictiile duratei maxime de viata la mamifere (MLS), fiecare modificand predictiile
cu peste un an. Asocierea genelor TRAPPC2L si ETV2 cu imbatranirea este nedocumentata,
sugerand ca acestea sunt noi candidati promitatori pentru cercetarea longevitatii. Cuantificarea
directiei si fortei asocierii utilizdnd coeficientul tau-b al lui Kendall intre expresia genica si
contributile SHAP a identificat gene puternic pro-longevitate (tau = 0.6) precum NEIL1,
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CALCOCO2 si LRR1, si gene puternic anti-longevitate (tau < —-0.6), incluzdnd C60rf89 si
PPP1CA. CALCOCO2 (tau = 0.72) a aparut in mod constant ca un predictor pozitiv puternic al
MLS in multiple organe (de exemplu, plaman R? = 0.56, creier R? = 0.54, ficat R* = 0.53, inima
R2 = 0.39). In schimb, cea mai puternicd gena anti-longevitate, C60rf89 (tau = -0.79), a fost un
predictor negativ in inima (R? = 0.61) si ficat (R = 0.40).

Genele care influenteaza durata de viatd la mamifere (MLS) interactioneaza adesea complex,
ducénd la efecte combinate diferite de impacturile individuale. Am analizat aceste interactiuni
folosind valorile de interactiune SHAP, care cuantifica relatiile de cooperare sau antagoniste.
Fig. 3c rezuma fortele de interactiune intre genele de top asociate cu MLS.

Apoi am aplicat modelarea cu retele bayesiene pentru a explora potentialele asocieri cauzale
intre expresia genica si MLS, identificand relatii robuste, independente de redundanta sau
corelatii indirecte(63). Folosind conceptul de patura Markov (Markov blanket) si algoritmul
SES(53), am efectuat 50 de iteratii pentru a genera semnaturi genice potential cauzale (Fig.
Supl. S3 din Kulaga, Ursu, Toren et al.(52)). Genele cu frecventa ridicata, indicand robustete, au
inclus NOXA1 (1.00), C60rf89 (0.94), NEU2 (0.94), NDUFAG6 (0.90), RBM46 (0.82), KCNMB3
(0.72) si CEL (0.60). Din punct de vedere biologic, aceste rezultate coroboreaza descoperirile
LightGBM-SHAP (de exemplu, NOXA1, C6orf89, CEL). Analiza de imbogatire functionala a
implicat puternic mecanismele mitocondriale ca fiind centrale pentru longevitate.

Am gasit o consistentd substantiala intre modelele liniare si cele LightGBM-SHAP. Integrarea
retelelor bayesiene a intarit rolul genelor NOXA1, C6orf89 si CEL, indicand mitocondriile,
repararea ADN-ului si reglarea metabolica ca procese cheie ale longevitatii. Integrand
rezultatele bayesiene si LightGBM-SHAP, am constatat ca genele robuste bayesiene (NOXAT,
C6orf89, NEU2, NDUFAG, RBM46, KCNMB3, CEL) nu au avut toate cele mai mari valori SHAP.
Totusi, CEL si KCNMB3 s-au clasat printre primele 10 gene cu cel mai mare impact conform
SHAP. Doua gene, NOXA1 si KCNMB3, au fost asociate robust cu MLS prin toate cele trei
metode. Aceste gene fiabile, validate incrucisat, sunt candidati puternici pentru investigatii
functionale viitoare asupra longevitatii.

Clasamentul Compozit si Determinarea Semnaturii Genice de Baza. Am stabilit un
clasament compozit prin agregarea metricilor de performanta din toate cele trei modele. Acest
clasament a fost utilizat cu modele liniare bayesiene multinivel pentru a identifica o semnatura
genica de baza optima si concisa. Evaluand subgrupuri (de la primele 3 la primele 13 gene) pe
baza deviantei penalizate, primele 11 gene clasate au fost selectate ca semnatura de baza,
echilibrand simplitatea modelului si precizia predictiei. Acest set final (detaliat in Tabelul 1 din
teza integrala si in publicatie) ofera candidati genici robusti pentru cercetarea longevitatii la
mamifere.

4. Concluzii

Acest studiu a analizat expresia genica la 41 de specii de mamifere si cinci organe, utilizand
modele liniare, neliniare si retele bayesiene, pentru a identifica determinantii genetici ai
Longevitati Maxime (MLS). Peste 1800 de gene au aratat corelatii semnificative cu MLS,
adesea specifice organului. Analiza cailor de semnalizare a confirmat caile de longevitate deja
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stabilite (de exemplu, repararea ADN-ului) si a sugerat altele noi (de exemplu, semnalizarea
PPAR). Invatarea automata interpretabila (LightGBM-SHAP) si retelele bayesiene au identificat
gene candidate suplimentare, cu o suprapunere limitata cu genele asociate experimental cu
longevitatea (LAGs), reflectdnd diferentele dintre variatia naturala si interventia genetica. In
special, CEL, NOXA1, CALCOCO2 si KCNMB3 au fost identificate in mod constant ca fiind
candidati robusti pentru longevitate. Cercetarea evidentiaza valoarea integrarii modelarii
complementare pentru a diseca durata de viatd a mamiferelor, oferind candidati promitatori si
un cadru metodologic solid.

lll. Semnatura imbatranirii in fibroza pulmonara

Toren, D., Yanai, H., Abu Taha, R., Bunu, G., Ursu, E., Ziesche, R., Tacutu, R. & Fraifeld, V. E.
Systems biology analysis of lung fibrosis-related genes in the bleomycin mouse model. Sci.
Rep. 11, 19269 (2021).

Declaratie de Contributii

In calitate de autor secundar, contributia mea principala a fost o analizd de modelare liniara
inter-specii, coreland expresia genelor pro- si anti-fibrotice cu durata maxima de viata (MLS) in
organele mamiferelor. De asemenea, am interpretat rezultatele si am asistat la pregatirea
manuscrisului. Proiectul a fost conceput si coordonat de echipele Prof. Vadim E. Fraifeld si Dr.
Robi Tacutu.

Rezultate si Discutii

Acest studiu a identificat 216 Gene Unice Asociate cu Fibroza Pulmonara (GUAFP) utilizand un
model murin de fibroza pulmonara indusa de bleomicina. Interventiile genetice au fost metoda
principala. Aproximativ 43,5% din aceste gene au aratat activitate anti-fibrotica, 50% au fost
pro-fibrotice, iar 6,5% au avut rezultate inconsistente.

Asocieri intre GUAFP si Longevitate. Corelarea GUAFP cu Genele Asociate cu Longevitatea
(GAL) din baza de date GenAge (58.64) a dezvaluit o legatura directionala puternica: 11 din 12
gene pro-longevitate au fost anti-fibrotice, si 5 din 6 gene anti-longevitate au fost pro-fibrotice
(testul exact al lui Fisher, p = 0,001).

Analiza ulterioara a datelor de expresie pulmonara inter-specii a aratat ca 34 de GUAFP s-au
corelat semnificativ cu Durata Maxima de Viata (MLS) a mamiferelor, o frecventa de 2,34 ori
mai mare decat cea asteptata (testul exact al lui Fisher, p = 6,4E-05). Acest lucru sustine
ipoteza ca genele legate de fibroza joaca un rol conservat in reglarea longevitatii, subliniind
fibroza ca un factor critic al patologiei legate de varsta.Concluzii

Genele pro-longevitate (GAL) sunt, in general, anti-fibrotice, iar genele anti-longevitate sunt in
mare parte pro-fibrotice, dezvaluind o legatura genetica puternica, comuna, intre fibroza
pulmonara si imbatranire. Analiza functionald intareste acest lucru, cu grupuri anti-fibrotice
bogate in GAL si grupuri pro-fibrotice predominant anti-GAL.
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Acest lucru se aliniaza cu faptul ca imbatranirea este legata de caile care guverneaza repararea
tesuturilor, inflamatia si metabolismul, care sunt critice pentru ambele conditii. Dovezile actuale
sugereaza ca fibroza si imbatranirea apar din mecanisme genetice/moleculare comune, desi
cauzalitatea necesita mai multe studii.

V. Comunicarea intercelulara este perturbata odata cu

imbatranirea

*Lagger, C., *Ursu, E., Equey, A., Avelar, R. A., Pisco, A. O., Tacutu, R. & de Magalhées, J. P.
scDiffCom: a tool for differential analysis of cell-cell interactions provides a mouse atlas of aging
changes in intercellular communication. Nat. Aging 3, 1446—1461 (2023).

* denota first co-authorship

Declaratia de Contributii

In calitate de co-prim autor al acestui studiu, am contribuit in mod egal la proiectarea,
implementarea si interpretarea proiectului alaturi de Dr. Cyril Lagger. In mod specific, am
co-dezvoltat instrumentele scDiffCom, scAgeCom si scAgeComShiny; am curatoriat si analizat
baza de date privind interactiunile ligand-receptor; si am efectuat analize pentru a sustine
constatarile cheie. Am fost, de asemenea, implicat activ in interpretarea rezultatelor si in
co-redactarea manuscrisului. Cadrul metodologic de baza si fluxul de lucru analitic au fost
dezvoltate in colaborare intre mine si C.L. si reprezintd obiectivul principal al acestui capitol.
Studiul a fost supervizat in comun de Dr. Robi Tacutu si Prof. Jodo Pedro de Magalh&es.

Prezentare generala

Dereglementarea comunicarii intercelulare (CIC) este un semn distinctiv fundamental al
imbatranirii, contribuind la diverse procese fiziologice si patologice. Pentru a investiga
sistematic aceste modificari, introducem scDiffCom si scAgeCom, doua instrumente
complementare pentru analiza alterarilor comunicarii celula-celula legate de varsta.

scDiffCom este un pachet R pentru analiza diferentiald a CIC utilizdnd date de transcriptomica
unicelulara, bazandu-se pe o baza de date curatoriata de aproximativ 5.000 de interactiuni
ligand-receptor (ILR) pentru a compara retelele de comunicare intre diferite conditii.

Construit pe baza scDiffCom, scAgeCom este un atlas cuprinzator al modificarilor CIC legate de
varsta, integrand date din 23 de tesuturi de soarece si 58 de seturi de date scRNA-seq din
Tabula Muris Senis si Calico Murine Aging Cell Atlas. Aceasta resursa dezvaluie schimbari
sistemice legate de varsta in semnalizarea intercelulara, incluzand:

Activitate imuna si inflamatie crescuta

Semnalizare de dezvoltare redusa

Angiogeneza si remodelare a matricei extracelulare afectate
Metabolism lipidic dereglat

scAgeCom identifica liganzi, receptori si tipuri de celule specifice care conduc aceste procese si
este disponibil public la https://scagecom.org.
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1. Introducere

Imbatranirea este un proces biologic complex, marcat de o dereglare semnificativd a ICC,
recunoscuta ca o caracteristica definitorie a imbatranirii(1.65). Cercetarile existente evidentiaza
mai multe modificari ale ICC odata cu imbatranirea, cum ar fi inflammaging (inflamatia asociata
varstei)(66), supravegherea imuna afectata(67) si secretia crescutda de SASP(68). Desi ICC
este dificil de masurat direct, progresele in analiza expresiei genice la nivel de celula unica
permit inferenta acesteia(69.70). Studiile existente privind Tmbatranirea la nivel de celula unica
se concentreazad adesea pe detectarea retelelor ICC separat in probele tinere si cele in varsta,
ceea ce ignora schimbarile in intensitatea interactiunii si nu dispune de un cadru statistic pentru
cuantificarea modificarilor. Pentru a aborda aceste limitari, am dezvoltat scDiffCom, un pachet R
pentru analiza diferentiala a ICC. Am aplicat scDiffCom la seturi de date scRNA-seq privind
imbatranirea din Tabula Muris Senis(71) si Atlasul Celular Murin al Tmbatranirii Calico(72) pentru
a crea scAgeCom, un atlas la scara larga care cartografiaza schimbarile ICC asociate varstei in
23 de tesuturi de soarece. Aceasta analiza confirma dereglarea sistemica, cu o reglare pozitiva
globala a activitatii sistemului imunitar si a inflamatiei si un declin al proceselor precum
organizarea matricei extracelulare si cresterea tisulara.

2. Metode

Recuperarea si Procesarea Interactiunilor Ligand—Receptor (ILR) si adnotarea cu termeni
GO, cai KEGG si resurse despre imbatranire. Am compilat seturi de date de nalta calitate,
curate, privind interactiunile ligand—receptor (ILR) din sapte baze de date publice (de ex.,
CellChat, NicheNet, CellPhoneDB), excluzand interactiunile prezise computational. ILR-urile au
fost adnotate cu termeni Gene Ontology (GO) utilizdnd o metoda personalizata bazata pe
intersectia bazata pe grafic a termenilor ligandului si receptorului din Ensembl. Caile KEGG au
fost atribuite numai daca atéat ligandul, cat si receptorul se aflau in aceeasi cale. Pentru a lega
ILR-urile de imbatranire, am integrat date din baze de date legate de imbatranire (GenAge,
LongevityMap, CellAge, HAGR) si am cuantificat articolele PubMed care fac referire la fiecare
gena ILR (sau omologul sau uman) in contextul imbatranirii.

Scorarea IIC (Media Geometrica), Detectia, Analiza Diferentiala si Clasificarea. scDiffCom
calculeaza un scor de interactiune inter-celulara (lIC) ca media geometrica a expresiei
ligandului si receptorului pentru a reflecta natura multiplicativa a interactiunilor, facand ca
logaritmul schimbarii de pliu (logFC) al acestuia sa fie media aritmetica a logFC-urilor genelor.
Metoda utilizeaza trei teste de permutare simultane pentru a evalua specificitatea IIC in doua
conditii (A, B) si expresia diferentiala intre ele, testand doar |IC-urile exprimate. Distributiile nule
sunt generate prin amestecarea etichetelor, iar p-valorile specificitatii unilaterale si p-valorile
expresiei diferentiale bilaterale sunt calculate si ajustate Benjamini-Hochberg. Un IIC este
,detectat” daca este exprimat, specific (p-adj. < 0,05) si clasat in top (80%). Este ,exprimat
diferential” daca p-valoarea sa diferentiala ajustatd cu FDR este < 0,05. [IC-urile detectate sunt
clasificate (UP, DOWN, FLAT, NSC) pe baza DE ajustate si a logFC, prioritizadnd testul
diferential. Compararea cu analiza standard a expresiei diferentiale a genelor evidentiaza
necesitatea integrarii rezultatelor la nivel de IIC si la nivel de gena pentru o captura si clasificare
fiabila a interactiunilor. Analiza de Supra-Reprezentare (ORA) este utilizata pentru a detecta
trasaturi supra-reprezentate (de ex., termeni GO, cai) in Interactiunile Inter-Celulare (IIC) reglate
diferential.
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Dezvoltarea scAgeComShiny. Aplicatia web interactiva Shiny, scAgeComShiny, a fost
construitda cu golem (73). Utilizeaza plotly (74) pentru diagrame de dispersie si rrvgo
(75)/IREVIGO(76) pentru vizualizarea termenilor GO si reducerea redundantei. Aplicatia este
containerizata cu Docker si implementata prin ShinyProxy.

Statistici si Reproductibilitate. Dimensiunea esantionului a fost limitatd de disponibilitatea
publica. Nu a fost posibila randomizarea sau orbirea. Au fost utilizate teste non-parametrice (DE
si ORA), cu corectia Benjamini-Hochberg aplicata in mod constant pentru testarea multipla.

3. Rezultate si Discutii

Interactiuni Ligand-Receptor (LRI) din baze de date existent

Pentru a analiza comunicarea intercelulara (ICC) din datele scRNA-seq, abordarea noastra a
necesitat mai intdi o bazd de date extinsa de interactiuni Ligand-Receptor (LRI). Pentru a
maximiza acoperirea diferitelor tipuri de interactiuni, am compilat LRI din sapte resurse
disponibile public, incluzand CellChat (79), CellPhoneDB (80), CellTalkDB (81),
NATMI/connectomeDB2020 (82), ICELLNET (83), NicheNet (84), si SingleCellSignalR (85).
Abordarea noastra a dus la generarea a doua baze de date curate de interactiuni
ligand—receptor (LRI). Baza de date LRI pentru soarece contine 4.582 de interactiuni, dintre
care 3.479 sunt simple si 1.103 sunt complexe. In mod similar, baza de date LRI pentru om
include 4.785 de interactiuni, cu 3.648 de interactiuni simple si 1.137 de interactiuni complexe.
Date detaliate pot fi gasite in Fig. 6a si Tabele Suplimentare 1 si 2 din Lagger, Ursu et al. (86).

Adnotarea functionala a LRI-urilor. Am implementat un cadru standardizat pentru a adnota
toate interactiunile ligand—receptor (LRI), asigurand relevanta biologica si facilitand analizele
ulterioare. Pentru a imbogati LRI-urile cu adnotari relevante din punct de vedere biologic, am
atribuit termeni Gene Ontology (GO) (87) interactiunilor intr-un mod semnificativ, prioritizand
termenii relevanti pentru interactiunea in sine, mai degraba decét pentru genele individuale.
LRI-urile au fost legate de caile KEGG (88) numai daca toate genele dintr-o anumita
interactiune erau prezente in aceeasi cale. in anticiparea analizelor legate de Imbatranire, am
mapat genele LRI de soarece la articole PubMed care le leaga de imbatranire si boli legate de
varsta (excluzand cancerele). in plus, am facut o referire incrucisatd a genelor cu bazele de
date cheie legate de imbatranire, inclusiv GenAge (54), CellAge (89.90), LongevityMap (91),
baza de date Gene Expression (92) a Resurselor Genomice de imbatranire Umana (HAGR)

(54).

Analiza comunicarii diferentiale celula-celula cu scDiffCom

Pachetul R scDiffCom detecteaza schimbari semnificative in comunicarea celula-tip (CClI) intre
doua conditii in seturile de date scRNA-seq (Fig. 4), lucrand cu obiecte R Seurat care contin
etichete de tip celular si conditie(93-95). Acesta atribuie un scor CCl bazat pe expresia medie a
ligandului si receptorului, robust la partinirea numarului total de celule(96). CCl-urile sunt
validate pe baza a trei criterii: expresie suficienta, specificitate printr-un test de permutare de tip
CellPhoneDB(80.97) si un scor relativ ridicat. CCl-urile sunt apoi clasificate ca reglate in sus
(UP), reglate in jos (DOWN), stabile (FLAT) sau fara schimbare semnificativa (NSC). scDiffCom
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utilizeaza Analiza Supra-Reprezentarii (ORA) pentru a analiza mii de Interactiuni Celula-Celula
(CCI) clasificate — Reglate in sus (UP), Reglate in jos (DOWN) sau Stabile (FLAT) — pe un
fundal al celorlalte. Aceasta abordare evita partinirea traditionala a imbogatirii bazate pe gene.

imbatranirea deregleazi mai multe aspecte ale comunicirii celuli-celula

Atlasul scAgeCom, construit cu scDiffCom pe 58 de seturi de date scRNA-seq murine din
TMS(71) si Calico(72), detaliaza modificarile comunicarii intercelulare (ICC) legate de varsta in
23 de organe, abordand dimorfismul sexual (Fig. 5 si Text Suplimentar 1, Fig. Suplimentara 1
din Lagger, Ursu et al.(86)). Aceasta resursa este disponibila online (https://scagecom.org/)
(Fig. 6). Dintre cele 393.035 de interactiuni celula-celula (CCl) detectate, 18% au fost reglate
diferential in functie de varsta (5% reglate in sus, 13% reglate in jos). 1.135 de interactiuni
ligand-receptor au fost filtrate pentru a minimiza descoperirile false. Benchmarking-ul a
confirmat ca scorul CCl al scDiffCom este superior comparatiilor la nivel de gena (Ext. Data Fig.
2 din Lagger, Ursu et al.(86)), metoda sa ORA evita partinirea termenilor GO (Fig. Suplimentare
2 si 3 din Lagger, Ursu et al.(86)) si bazele de date LRI sunt cruciale (Fig. Suplimentara 4 din
Lagger, Ursu et al.(86)). Aceste rezultate stabilesc scDiffCom ca un instrument robust pentru
detectarea CCl-urilor mediate de proteine, relevante din punct de vedere biologic, din datele
scRNA-seq, facand din atlasul scAgeCom o resursa valoroasa pentru cercetarea imbatranirii.
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Figura 4. Rezumatul Fluxului de Lucru al scDiffCom.

Citirile de secventiere ARN monocelulard (scRNA-seq) sau identificatorii moleculari unici (UMIs) sunt mai intéi
agregatli pe tipuri de celule si conditii experimentale (1). Datele de expresie genicd sunt apoi mapate pe baza de
date curatoriatd de interactiuni ligand-receptor (LRIs) (2) pentru a deduce toate interactiunile celuld-celuld (CCls)
posibile intre tipurile de celule (3). Sunt efectuate teste statistice de permutare pentru a evalua relevanta biologica
a fiecarui CCl si pentru a detecta expresia diferentiald intre conditii (4). CCls sunt clasificate ulterior pe baza
metricilor calculate, incluzadnd scorurile de interactiune, valorile P si log-schimbarea de pliu (5). Rezultatele sunt
compilate intr-un format structurat adecvat pentru analiza si interpretarea ulterioara (6). FC, schimbare de pliu (fold
change); tSNE, incorporare stocastica de vecinatate distribuita t (t-distributed stochastic neighbor embedding).
Figura adaptata din Figura 2 din Lagger, Ursu. et al. (2023), utilizata sub licenta CC BY 4.0
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Figura 6. Prezentare generala a rezultatelor vizuale in scAgeCom.

scAgeCom ofera o varietate de rezultate grafice, accesibile la https:/scagecom.org/, pentru a facilita explorarea
schimbatrilor legate de imbatranire in comunicarea intercelulara.

Figuré adaptata dupd Figura 4 din Lagger, Ursu. et al. (2023), utilizata sub licenta CC BY 4.0
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Figura 7. Variatia tiparelor de reglare in functie de varsta ale CCl-urilor in seturile de date scAgeCom.
Proportiile de CCl-uri clasificate ca fiind suprareglate (UP), subreglate (DOWN), stabile (FLAT) sau fara modificari
semnificative (NSC) in functie de vérsta difera intre seturile de date, in functie de tipul de tesut, sex si metodologia
experimentald. In general, seturile de date TMS FACS prezintd un zgomot mai mare, reflectat de o proportie mai
mare de CCl-uri clasificate ca NSC, comparativ cu seturile de date bazate pe Droplet. in plus, seturile de date TMS
FACS (masculin) afiseaza o fractiune notabil mai mare de CCl-uri subreglate in functie de vérsta, in raport cu
celelalte conditii.

Figuréd adaptata din Figura 6 din Lagger, Ursu. et al. (2023), utilizata sub licenta CC BY 4.0

Reglarea interactiunilor celula-celula (ICC) odata cu varsta este foarte variabila, seturile de date
TMS FACS (masculi) aratand multe ICC-uri reglate negativ. Seturile de date FACS sunt mai
zgomotoase decéat seturile de date Droplet. Am prioritizat schimbarile care apar in mai multe
tesuturi, implicand gene noi de imbatranire, in secretomica sau dependente de sex.

A fost confirmata o reglare sistemica in sens ascendent a proceselor inflamatorii, imune si
virale, incluzénd interactiunile B2m:Cd3g, Tnfsf12:Tnfrsf12a si Ccl5 (Ext. Data Fig. 3b din
Lagger, Ursu et al.(86)). B2M este prezent in cinci secretome. Slpi:Plscr1, desi reglat ascendent
in opt tesuturi, este Tn mare masura neexplorat in contextul imbatranirii.

Metabolismul lipidelor este dereglat (Ext. Data Fig. 4 din Lagger, Ursu et al.(86)) cu tipare
specifice sexului: ICC-urile legate de Apoe sunt reglate ascendent la masculi, dar reglate
descendent la femele, si invers pentru ICC-urile legate de App. Aceste proteine asociate bolii
Alzheimer (AD) au probabil roluri sistemice in imbatranire, sustinute de detectia in secretoma.

O observatie frapanta este reglarea descendenta a organizarii matricei extracelulare (MEC) si a
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aderentei celulare (Ext. Data Fig. 5 din Lagger, Ursu et al.(86)). Acest declin, determinat de
colagene, cadherine si metalopeptidaze cu integrine, este cel mai puternic in tesutul conjunctiv,
celulele epiteliale si endoteliale.

Cresterea, dezvoltarea, supravietuirea, diferentierea si angiogeneza, de asemenea, scad (Ext.
Data Fig. 6 din Lagger, Ursu et al.(86)), sugerand o regenerare afectata. Comunicarea redusa
intre celulele stem si catre celulele endoteliale leaga imbatranirea de capacitatea regenerativa
diminuata (Ext. Data Fig. 5¢c din Lagger, Ursu et al.(86)).

scAgeCom dezvaluie tipare dimorfice sexuale (Fig. 7); de exemplu, in setul de date TMS FACS
Plaman, 13% din ICC-uri (incluzadnd App, Pecam1 si Itgb1) au aratat o expresie mai puternica la
masculii tineri, care a scazut odata cu vérsta la masculi, dar a crescut la femele, evidentiind
necesitatea abordarilor personalizate.

4. Concluzii

In ciuda limitarilor semnificative, scAgeCom ofera un atlas extins al imbatranirii comunicarii
intercelulare la soareci, oferind perspective noi asupra modificarilor de comunicare specifice
tesutului si specifice sexului. Contributiile cheie includ:

o Cartografierea comunicarii intercelulare cuprinzatoare in 23 de tesuturi

¢ |dentificarea potentialelor tinte terapeutice (de ex., B2m, Mif, Angpt1, Apoe)

e Noi ipoteze privind mecanismele de imbatranire, inclusiv modificarile metabolismului
lipidic si mecanismele declinului vascular

e Potential de integrare cu seturi de date de senescenta si proteomica pentru validare
ulterioara

Tn viitor, analiza incrucisata cu alte atlase de imbatranire, cum ar fi atlasul SASP, va fi esentiala
pentru a ne rafina intelegerea modului in care comunicarea intercelulara influenteaza procesul
de Imbatranire.

V. Compozitia datelor de antrenament negative este
critica pentru invatarea repertoriilor imune

*Ursu, E., *Minnegalieva, A., Rawat, P., Chernigovskaya, M., Tacutu, R., Sandve, G. K., Robert,
P. A. & Greiff, V. Training data composition determines machine learning generalization and
biological rule discovery. Nature Machine Intelligence (2025). doi:10.1101/2024.06.17.599333

* denota first co-authorship
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Prof. Victor Greiff si am participat la revizuirea versiunii finale. Natura colaborativa a acestui
studiu este reflectata in contributiile noastre egale. Acest capitol se axeaza pe munca pe care
am dezvoltat-o in comun si pe interpretarea rezultatelor in contextul mai larg al modelarii
imunologice sub indrumarea Prof. Victor Greiff.

1. Introducere

Modelele de invatare automata (ML) supravegheata depind in mod critic de compozitia seturilor
de date etichetate, in special de definirea esantioanelor negative (care reprezintd absenta
clasei tinta) in clasificarea binara(98-101,102.103). Acest factor este insuficient studiat in ceea
ce priveste influenta sa asupra generalizarii modelului si extractiei regulilor biologice. Contextul
predictiei legarii anticorp-antigen, cu strategiile sale variate de construire a datelor negative,
ofera un cadru pentru a studia aceste efecte. Lucrarile anterioare arata ca alegerea exemplelor
negative afecteaza precizia predictiva si generalizarea in modelele de interactiune
anticorp-antigen si TCR-antigen(104-106,107-111); cu toate acestea, impactul asupra
interpretabilitatii (mecanismele de legare deduse) este neexaminat. Pentru a investiga, am
utilizat ,Absolut!”’(106) pentru a genera date sintetice anticorp-antigen cu diverse strategii de
seturi de date negative (Fig. 8), concentrdndu-ne pe regiunile CDRH3. Retelele neuronale
simple si DeepLIFT(112-114) au fost utilizate pentru a evalua regulile biologice invatate (Fig. 8).
Modelele antrenate cu date negative mai similare cu clasa pozitiva au generalizat mai bine la
datele neobservate si au dezvaluit reguli de legare diferite in comparatie cu cele antrenate cu
exemple negative disimilare. Aceste tendinte s-au mentinut si pe date experimentale (Fig.
8,9)(115). Proiectarea si selectia exemplelor negative este o componenta critica, adesea trecuta
cu vederea, pentru construirea de modele ML robuste si interpretabile in aplicatiile biologice.

Acest capitol final ofera o contributie metodologica la modelele de invatare automata a
repertoriilor receptorilor imuni, abordand provocarile legate de calitatea datelor de antrenare si
de atribuirea specificitatii antigenice. Acesta imbunatateste limitarile actuale de modelare
AIRR-Seq pentru a spori interpretabilitatea si relevanta biologica, stabilind o baza
computationala pentru studiile viitoare privind imbatranirea imuna si schimbarile repertoriului
imun adaptiv.

20


https://sciwheel.com/work/citation?ids=14854424,16358199,16396505,16396506&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=4940299,14553038&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=12507037,11316158,14115517&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=14042131,13987350,14696658,15465314,16396490&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0
https://sciwheel.com/work/citation?ids=14115517&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14696626,15166754,16396509&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=15493903&pre=&suf=&sa=0

a Data in sup d ML: model perfe bias and ledge b Research question

Lzbeted training data Chaice of negative data

ML training O
A

affecis

Background

ML performance and Infering rules about positive data?
generalization ability o

% Performan ferred w2
] = 0”"': [} Inferred e -\\IrJ Affinity

Amino-acld impartance

Dataset assembly d ML performance and generalization L] Rule recovery

Datasels: Toek . Task 4
Association analysis
Synthetic  Experiments Tran | Test

o | o
B3| v | 7
=]
B v X
o
=
ML Task 1 +
positve nngutive trpe
Ground truth:
-y .
ML Tas + a e &
egative tyo k
f data infl ML

| ' I |
Choice of negative data for 1} In-distribution per Z) Out-of ibution performance 3) Rule discovery
ML training :

" i, 1)

&

Results

+ 0 perfarmance
D
w
Binding

o

Figura 8. Compozitia setului de date de antrenament modeleaza generalizarea si descoperirea de reguli a
ML.
Figura adaptata dupé Figura 1 din Ursu, E. et al. (2025), utilizata sub licenta CC BY 4.0

2. Metode

Un set de date de legare anticorp-antigen semi-sintetic a fost generat utilizdnd cadrul de
simulare Absolut! (Robert et al., Akbar et al.(106,116)). Acest set de date combina secvente
autentice de CDRH3 de soarece(117) cu structuri de antigen PDB formatate in grila 3D.
Secventele CDRH3 au fost andocate pe antigene rigide pentru a calcula energiile de legare
utilizdnd potentialul statistic Miyazawa—Jernigan intr-un model de grila 3D (cadrul Absolut!,
Robert et al.(106)). Secventele au fost etichetate in functie de percentila de afinitate de legare:
afinitate mare (top 1%), slaba (1-5%) si ne-liganti (restul de 95%). Au fost utilizate date de la
zece antigene.

Pentru sarcinile de predictie, seturi de date echilibrate (30k antrenare, 10k testare) au fost
create pentru fiecare antigen. Probele pozitive (liganti din top 1%) au fost comparate cu patru
definitii de clasa negativa: Vs 1 (un singur antigen diferit), Vs 9 (noua alte antigene agregate),
Vs Slab (liganti slabi, 1-5%) si Vs Ne-ligant (>5%). Reproductibilitatea a fost asigurata cu sase
impartiri antrenare-testare si patru seminte aleatoare per impartire.

Modelul de bazad de invatare Automatd a fost SN10(106), o retea neuronalad feedforward
superficiala antrenata pe CDRH3-uri codificate one-hot (intrare cu 220 de neuroni, strat ascuns
ReLU cu 10 unitéti, iesire sigmoida). Acesta a fost comparat cu un Transformer mai profund si
variante SN10 bazate pe PLM, utilizdnd incorporari pre-antrenate ESM2b (1280 dim.) si
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AntiBERTaZ2 (1024 dim.)(118,119.120), generate prin EmbedAIRR. Interpretarea a fost explorata
utilizand DeepLIFT(114) pentru a cuantifica contributia aminoacizilor. in plus, Analiza Specifica
Epitopului a implicat construirea de seturi de date restrénse la secventele care se leaga de un
singur epitop dominant (de exemplu, 1HODE1).

3. Rezultate si Discutii

1. Compozitia secventelor din setul de date de antrenare influenteaza performanta
predictiei in sarcinile de clasificare binara in-dinstribution (ID) si out-of-distribution
(OOD)

1.1 Configuratia invatarii automate pe date sintetice si experimentale

Am inceput prin a investiga modul in care diferitele definitii ale clasei negative afecteaza
performanta si generalizabilitatea modelelor de invatare automata supravegheata pentru
predictia legarii anticorp—antigen. Fiecare dintre cele patru sarcini a utilizat un set identic de
probe pozitive — secvente CDRH3 cu afinitate ridicatda — dar a diferit prin modul in care a fost
definita clasa negativa.

Am utilizat date sintetice de secvente CDRH3, adnotate cu energii de legare pentru zece
antigene. Pentru fiecare antigen, clasa pozitivd a constat in secvente care se incadreaza in
percentila de afinitate de top 1%. Am definit patru tipuri de clase negative: vs Nelegare
(Non-binder): secvente CDRH3 din cea mai mica percentila de 95% a energiei de legare la
acelasi antigen; vs Slaba (Weak): liganzi slabi in percentila 1-5% pentru acelasi antigen,
forméand un set disjunct fatd de vs Nelegare; vs 1: liganzi cu afinitate ridicata (top 1%) la un
singur antigen distinct, excluzand cele care se leaga si de antigenul clasei pozitive; vs 9: o
extindere a vs 1, cuprinzand liganzi cu afinitate ridicata la fiecare dintre celelalte noua antigene,
reprezentate in mod egal.

Am antrenat modele SN10. Aceasta arhitectura a fost aleasa pentru interpretabilitatea sa si
performanta anterioara de benchmarking si a aratat rezultate comparabile cu modelele mai
profunde. Pentru a valida concluziile noastre derivate din seturile de date sintetice, am replicat
aceeasi configuratie experimentala utilizdnd setul de date care vizeazd HER2 publicat de
Porebski et al. (115).

1.2 Acuratetea Predictiei in Distributie (ID) Depinde de Compozitia Setului de Date de
Antrenare

Pentru a evalua capacitatea modelelor de a invata reguli generalizabile, am masurat mai intai
acuratetea in distributie (ID) — performanta pe datele de testare cu aceleasi definitii ale claselor
pozitive si negative utilizate in timpul antrenarii (Fig. 9a). La toate cele patru tipuri de sarcini,
modelele au obtinut o acuratete ID ridicata, cu valori mediane care depasesc 0.85. A aparut un
clasament clar intre sarcini: modelele au functionat cel mai bine pe ,vs Nelegare” (interval:
0.97-1.00, mediana: 0.99), urmate de ,vs 1” (interval: 0.94-1.00, mediana: 0.98), ,vs 9”
(interval: 0.91-0.98, mediana: 0.94) si, in final, ,vs Slaba” (interval: 0.85-0.98, mediana: 0.92),
care s-a dovedit a fi cea mai dificila (Fig. 9b). Mai mult, modelul SN10 a depasit regresia
logistica (LR), in special in sarcina ,vs Slaba”. Acest lucru sugereaza ca SN10 poate valorifica
dependentele inter-pozitionale in secvente pe care LR nu le poate.
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1.3 Disimilaritatea Secventei Explica Variabilitatea in Acuratetea ID

Pentru a intelege de ce performanta ID a diferit intre sarcini, am examinat relatia dintre
acuratetea modelului si disimilaritatea secventei intre seturile de date pozitive si negative.
Folosind matricile de greutate pozitionala (PWM), am calculat distantele Jensen—Shannon
(JSD) pentru a cuantifica divergenta distributionald. Am constatat ca JSD a crescut in ordinea:
,vs Slaba” < ,vs 9” < ,vs 1" < ,vs Nelegare”, reflectand o divergentd mai mare a secventei intre
clasele pozitive si negative (Fig. 9c). Acest gradient a oglindit indeaproape tendinta de
acuratete ID, iar JSD a fost corelat semnificativ cu performanta modelului pentru sarcinile ,vs 9”
(r=0.94), ,vs 17 (r=0.73) si ,vs Nelegare” (r = 0.77) (toate p < 0.05), dar nu si pentru ,vs Slaba”
(r = 0.30, p 2 0.05) sau pentru oricare dintre controalele amestecate (Supp. Table 1, Supp. Fig.
3a din Ursu, Minnegalieva et al. (121)).

1.4 Acuratetea in Afara Distributiei (OOD) Este De Asemenea Modelata de Compozitia
Setului de Date

Am evaluat generalizarea in afara distributiei (OOD) (Fig. 9d). Acuratetea OOD a fost mai mica
decéat performanta in distributie (ID), asa cum era de asteptat.

Modelele antrenate pe ,vs Nelegare” au aratat cea mai mare scadere (mediana ID 0.99 la OOD
0.72—-0.82) (Supp. Fig. 3d din Ursu, Minnegalieva et al. (121)). Modelele antrenate pe ,vs 9”
s-au generalizat cel mai bine la ,vs 17 (0.94), in timp ce modelele ,vs 1" au performat moderat
(0.78 la ,vs 9,” 0.72 la ,vs Nelegare”). Alegerea antigenului negativ ,vs 1” a afectat rezultatele
(Supp. Fig. 5 din Ursu, Minnegalieva et al. (121)).

,Vs Slaba” a fost cel mai dificil test OOD (acuratete 0.58—0.71). in mod surprinzator, modelele

=

antrenate pe ,vs Slaba” s-au generalizat cel mai bine in ansamblu (0.90-0.96) (Fig. 9d).

Acuratetea ID ridicata nu garanteaza generalizarea. De exemplu, ,vs Nelegare” a produs o
performanta ID excelenta, dar slaba OOD, in timp ce ,vs Slaba” a fost cea mai dificila sarcina
ID, dar cea mai robusta in generalizare. Acest lucru subliniaza rolul critic al designului clasei
negative pentru modelele de invatare automata a legarii anticorp—antigen.

1.5 Datele Experimentale Confirma Constatarile din Seturile de Date Sintetice

Pentru a valida aceste constatari in date din lumea reala, am analizat un set de date
experimentale de legare anticorp—antigen publicat recent de Porebski et al. (115), care, la fel ca
datele sintetice ,Absolut!”, include secvente CDRH3 adnotate cu afinitate impotriva HERZ2 (a se
vedea Metodele).
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Modelele SN10 au fost antrenate pe fiecare sarcina si evaluate pe ambele seturi de testare, atat
ID, céat si OOD (Fig. 9f). Modelul ,vs Non-binder” a intdmpinat dificultati la sarcina ,vs Weak”
(precizie OOD de 68%), in timp ce modelul ,vs Weak” a generalizat bine (precizie OOD de
88%). Asa cum s-a intamplat in experimentele sintetice, antrenarea ,vs Weak” a dus la limite de
decizie mai stranse si mai generalizabile, care au echilibrat performanta pe toate sarcinile. Prin
contrast, antrenarea ,vs Non-binder’ a condus la limite de decizie mai permisive, care au oferit
o rata de rechemare (recall) ridicata in contextele ID, dar au dus la rezultate fals pozitive in
scenariile OOD.

2. Compozitia setului de date de antrenament determina acuratetea recuperarii regulilor
biologice

Dupa ce am stabilit cd modul de compozitie a datelor de antrenament negative influenteaza
acuratetea predictiei si generalizarea in sarcinile de invatare automata (IA) supervizata binara
bazata pe secvente, am investigat in continuare daca acesta afecteaza si capacitatea modelului
de a invata reguli de legare semnificative din punct de vedere biologic.

2.1 Compozitia Setului de Date de Antrenament Impacteaza invatarea Energiei de Legare
a Anticorpilor

Am intrebat mai intdi daca modelele antrenate au capturat peisajul energetic al secventelor de
anticorpi. Desi unele studii au explorat predictia simultana a statusului de legare si a afinitatii
(122.123), clasificarea binara (legare vs. non-legare) este adesea mai usor de realizat
experimental. Pentru a evalua dacd modelul nostru, SN10, invatd implicit relatiile
secventa-energie de legare, am calculat corelatia intre logitii de iesire prezisa (adica, activarile
brute pre-sigmoid) si energiile de legare reale (ground-truth) pentru fiecare secventa. Acesti
logiti reflecta increderea modelului in prezicerea apartenentei la clasa pozitiva (Fig. 10a). O
distributie 2D reprezentativa pentru antigenul 3VRL in sarcina ,vs Weak” este prezentata in Fig.
10b (insert).

In general, modelele antrenate pe seturile de date ,vs 1” si ,vs 9” nu au reusit s invete regulile
energetice per-secventa, cu corelatii slabe de —0,05 si, respectiv, —0,19 (Fig. 10b). Exceptii
notabile au fost antigenele 3VRL si 5E94, unde modelele au invatat energiile de legare mai
eficient, indiferent de tipul setului de date negativ. in contrast, modelele antrenate cu negative
,vs Weak” sau ,vs Non-binder” au invatat in mod constant asocieri energetice semnificative
pentru toti antigenii, atingand corelatii Pearson mediane de -0,62 (interval: —0,33 la —0,90) si,
respectiv, —=0,51 (interval: —0,29 la —-0,85).

Aceste rezultate indica faptul ca capacitatea de a invata reguli bazate pe energie depinde
puternic de tipul de date de antrenament negative. Acest lucru este sustinut de o varianta
semnificativa a valorilor de corelatie intre sarcini (ANOVA unidirectionala, p = 8,7e-58) si intre
antigeni (ANOVA unidirectionala, p = 4,6e-25).

Pentru a evalua daca invatarea regulilor energiei de legare afecteaza performanta modelului,
am corelat asocierile logit-energie cu acuratetea predictiei atat in ID (in-distribution), cat si in
OOD (out-of-distribution). Asocieri semnificative au fost observate in setarile ID pentru sarcinile
,vs Weak” (r =-0,77) si ,vs Non-binder” (r = -0,83) (Fig. 10c). Pentru sarcinile OOD, acuratetea
a fost asociata semnificativ cu invatarea regulilor bazate pe logit in toate cazurile (Fig. supl. 4b
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din Ursu, Minnegalieva et al. (121)).

2.2 Compozitia Setului de Date de Antrenament Impacteazi invatarea Contributiei
Pozitionale la Energia de Legare

Dupa ce am aratat ca SN10 poate capta reguli energetice per-secventa, am investigat in
continuare daca acesta ar putea invata si contributiile specifice pozitiei ale reziduurilor de
aminoacizi la legare — un determinant esential al recunoasterii imune. Ipoteza noastra a fost ca
regulile invatate corect ar avea ca rezultat corelatii negative intre valorile de atribuire (calculate
prin DeepLIFT (114)) si energia de legare per-reziduu: reziduurile cu legare mai puternica
(energie mai mica) ar trebui sa primeasca o atribuire mai mare in predictiile pozitive.

in concordanta cu rezultatele per-secventa, cea mai puternica invatare a regulilor per-reziduu a
avut loc in modelele antrenate pe seturile de date ,vs Weak” (mediana r = -0,69) si ,vs
Non-binder” (mediana r = —0,71). in contrast, modelele antrenate pe sarcinile ,vs 9” si ,vs 1” au
aratat asocieri mai slabe sau chiar inversate (-0,36 si, respectiv, —0,01). in special, pentru
antigene precum 3VRL, 5E94 si 3RAJ, corelatile au ramas ridicate in toate seturile de date
negative — sugerand ca, in unele cazuri, datele pozitive singure pot fi suficiente pentru a invata
reguli la nivel de pozitie.

Tipul sarcinii a influentat semnificativ invatarea regulilor (ANOVA unidirectionala, p = 3,5e—43).
Nu a fost gasita nicio corelatie semnificativa intre acuratetea predictiei ID si invatarea regulilor
per-reziduu (Fig. 10e), subliniind importanta evaluarii metricei de explicabilitate in mod
independent. Cu toate acestea, acuratetea OOD a corelat cu acordul atribuire-energie in
majoritatea setarilor ,vs 1" si ,vs 9" (Fig. supl. 4b din Ursu, Minnegalieva et al. (121)). in
contrast, astfel de asocieri nu au fost observate pentru modelele antrenate pe seturile de date
,vs Weak” sau ,vs Non-binder”.

2.3 Investigarea Amploarei Aditivitatii in Regulile invitate

Desi sarcinile ,vs Weak” si ,vs Non-binder” au produs profiluri de atribuire foarte similare,
performanta lor diferitd in afara distributiei (OOD) ne-a determinat sa exploram daca aceste
modele se bazau mai mult pe reguli de decizie aditive sau non-aditive. Mai exact, am urmarit sa
intelegem daca diferentele de generalizare ar putea fi explicate prin amploarea interactiunilor de
caracteristici invatate in timpul antrenamentului. Pentru a evalua acest lucru, am antrenat
modele de regresie logistica. Aceste modele nu au capacitatea de interactiune a
caracteristicilor. Ca atare, ele servesc ca etalon pentru invatarea pur aditiva a regulilor.
Constatarile implica faptul ca sarcinile ,vs Non-binder” pot fi rezolvate in principal folosind
caracteristici aditive, in timp ce ,vs Weak” necesita reprezentari mai complexe, bazate pe
interactiune. Acest lucru se aliniaza cu performanta superioara a SN10 fata de regresia logistica
in sarcini mai dificile, cum ar fi ,vs Weak” (Fig. supl. 3¢ din Ursu, Minnegalieva et al. (121)),
sustindnd ideea ca SN10 beneficiazd de capacitatea sa de a modela interactiunile
caracteristicilor.

Discutie

Definirea datelor pozitive si negative influenteaza fundamental comportamentul modelelor de
invatare automata, dar raméne o zona insuficient exploratd in aplicatile imunologice de
machine learning (ML). TIn acest studiu, am demonstrat c& atat performanta in distributie (ID) si
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in afara distributiei (OOD), cat si interpretabilitatea regulilor invatate, depind puternic de
compozitia setului de date de antrenament in contextul predictiei legarii anticorp-antigen.

Mai general, rezultatele noastre subliniaza faptul ca organizarea datelor de antrenament nu
este doar un pas pregatitor, ci o consideratie de design centrala in dezvoltarea de modele ML
robuste si generalizabile. Planificarea si justificarea atentd a compozitiei setului de date sunt
critice pentru obtinerea de rezultate predictive valide si pentru descoperirea de reguli cu
semnificatie biologica, in special atunci cdnd modelele sunt aplicate dincolo de scopul imediat al
datelor lor de antrenament.

Lucrarea noastra demonstreaza ca definirea datelor negative de antrenament are un impact
profund asupra comportamentului modelului ML, incluzand precizia predictiei, generalizarea (ID
vs. OOD) si descoperirea de reguli de legare cu semnificatie biologica in interactiunile
anticorp-antigen. In ciuda importantei sale, acest subiect rdmane insuficient explorat in
domeniul anticorpilor in comparatie cu modul in care este tratat in studiile de predictie a

epitopilor TCR (107-111).
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Figura 10. Compozitia setului de date negativ modeleaza capacitatea modelului de a invata regulile
de legare pentru secventele pozitive.
Figura adaptatéa dupéa Figura 3 din Ursu, E. et al. (2025), utilizata sub licenfa CC BY 4.0

Descoperirile noastre subliniaza ca: Definirea atenta a seturilor de date negative este cruciala
pentru modelele ML interpretabile si generalizabile in imunologie; Performanta OOD ar trebui sa
fie o metrica explicita in evaluarea descoperirii de reguli si a interpretabilitatii modelului, iar
metodele actuale de atribuire au limitari, fiind necesare noi tehnici pentru a surprinde
interactiunile de caracteristici, cum ar fi epistazia, care stau probabil la baza fenomenelor

biologice complexe (124-126).

In concluzie, descoperirile noastre demonstreaza ca: Modelele antrenate pe seturi de date cu
esantioane pozitive si negative bine echilibrate generalizeaza mai bine si invata reguli biologice
mai robuste; Designul setului de date negative nu este doar un pas tehnic, ci un determinant
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central al comportamentului si interpretabilitati modelului; Lucrarile viitoare ar trebui sa
exploreze in mod sistematic strategii pentru selectarea cazurilor negative dificile (hard
negatives) (127), sa investigheze secventele de tip "aproape-ratate" (near-miss sequences) si
sa dezvolte metode de atribuire care sa surprinda determinantii complecsi ai legarii.

VI. Consideratii finale

Lucrarea prezentata in aceasta teza a fost motivata de o intrebare centrala: cum putem intelege
mai bine complexitatea biologica a imbatranirii prin prisma omicii moderne, a biologiei
computationale si a nvatarii automate (machine learning)? Pentru a aborda acest subiect, am
integrat seturi de date multidimensionale, am dezvoltat instrumente computationale inovatoare
si am colaborat interdisciplinar pentru a explora mecanismele cheie ale imbatranirii dintr-o
perspectiva de sistem.

De-a lungul celor cinci capitole, am abordat imbatranirea din unghiuri distincte, dar
interconectate. In Capitolul 1l, am explorat semnéturile transcriptomice la 41 de specii de
mamifere, descoperind tipare de expresie genica conservate si specifice organelor, asociate cu
durata de viata. Capitolul Il a extins intersectia dintre imbatranire si remodelarea fibrotica in
plamani, evidentiind atat tipare moleculare conservate, cat si semnaturi unice de imbatranire
intr-un model de fibroza bine caracterizat. in Capitolul IV, m-am concentrat pe comunicarea
intercelulara — o trasatura distinctiva a imbatranirii care ramane insuficient studiatd — si am
co-dezvoltat scDiffCom si scAgeCom, oferind un cadru scalabil si generalizabil pentru a mapa si
cuantifica perturbarile de semnalizare asociate varstei. In cele din urma, in Capitolul V, m-am
indreptat catre sistemul imunitar adaptiv, combinand invatarea automatd cu date AIRR-Seq
pentru a examina modul in care performanta modelului si intelegerea biologica sunt influentate
de compozitia seturilor de date de antrenament — o contributie fundamentala pentru studiile
viitoare privind imbatranirea repertoriului imun.

Pe tot parcursul acestei teze, am cautat nu doar sa generez rezultate, ci sa contribui cu
instrumente, cadre si metodologii care sa sprijine comunitatea de cercetare a imbatranirii si in
stiintele vietii. Aceasta include strategii de invatare automata interpretabile, protocoale analitice
inter-specifice si seturi de date robuste, puse la dispozitie public pentru o reutilizare mai larga.
Cercetarea mea reflecta convingerea ca o intelegere biologica profunda apare adesea la
intersectia dintre bogatia datelor, rigoarea metodologica si colaborarea interdisciplinara, dar si
intelegerea biologica fundamentala.

Desi multe intrebari raman deschise, sper ca aceastd tezd ofera un pas semnificativ spre
intelegerea determinantilor moleculari ai imbatranirii. Lucrarile viitoare pot extinde instrumentele
dezvoltate aici, aplicAndu-le la seturi de date umane longitudinale, studii interventionale sau
screening-uri terapeutice. Obiectivul final ramane acelasi: de a descurca complexitatea
imbatranirii in moduri care pot informa strategii pentru vieti mai sanatoase si mai lungi.
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